METHODOLOGICAL APPROACH TO THE ESTIMATING RADIO TERMINAL-RETRANSMITTERS CONNECTIVITY OF MOBILE RADIO SYSTEM

Anatolii I. Sbitniev, Dmytro A. Bukhal

Abstract


One of the most effective technique to counteract enemies modern electronic reconnaissance facilities is creation mobile radio communication systems which can function with reduce power.

In these systems radio terminals have equal status and interact with each other directly or via relaying messages thought other ones. However, mobility radio terminal-retransmitters and existing destabilizing natural and manufactured factors with an influence on communication give a problem to estimate connectivity during functioning these systems.

In this paper it is proposed the methodological approach to estimate radio terminal-retransmitters connectivity of mobile radio systems using fuzzy graphs through fuzzy neighborhoods and boundaries.Theoretical Foundations of Information Technologies Creation and Use

The approach allows solving the problem of estimating connectivity in simple analytic form. This form gets corresponding quantitative rate and avoids excessiveness in calculations which are inherent in traditional methods.

Subsequent progress with the methodological approach will give us an chance to solve special tactical tasks in military control and communication area.


Keywords


mobile radio system; radio terminal-retransmitters connectivity; membership functions; fuzzy graph; degree of connectivity

References


Piret P. (1991), On the connectivity of radio networks, IEEE Transactions on Information Theory 37, pp. 1490–1492.

Gupta P. Kumar P.R. (1998), Critical power for asymptotic connectivity in wireless networks. – Stochastic Analysis, Control, Optimization and Applications, p. 115

Philips, Thomas K (1989) Connectivity Properties of a Packet Radio Network Model, IEEE Transactions on Information Zlieory, p.1044-1047.

Yuan-Chieh Cheng, Critical Connectivity Phenomena in Multihop Radio Models, IEEE Transactiorvls on Communications, vo1.37.

Gilbert E. N. (1961) Random plane networks JSoc. Indust. Appl.Math, vo1.9, pp.533-543.

Zlotov А.V. Application of approximation-combinative method for solution a problem of creation optimal networks with non-linear functions value ribs. [Primenenie aproksimatsionno-kombinatornogo metoda dlya resheniya zadach postroeniya optimalnyh setey s nelineynymy funktsiyami stoimosti reber], CC AS USSR, M., 1984.

Lotar’ov D. Т. (1980) Stainer problem for transport network surface specified of digital model [Zadacha Sheynera dlya trasportnoy seti na poverhosti, zadannoy tsifrovoy model’yu], AIT, № 10, pp.104-115.

Yerzin, А. I. (1983) Asymptotic approach to solution Stainer problem with concave function stream value [Asimptoticheskiy podhod k resheniyu zadachi Steynera s vognutoy funktsiey stoimosti potoka]. N, № 4, MI CO AS USSR.

Kofman А. (1982) Introdaction to theoty of fazzy sets [Vvedenie v teoriyu nechetkih mnozhestv]. Radio and communication, М 1982, p. 432.


GOST Style Citations


Piret, P. On the connectivity of radio networks [Текст] : IEEE Transactions on Information Theory 37, 5 (1991), pp. 1490–1492.

Gupta, P. Kumar P.R., Critical power for asymptotic connectivity in wireless networks [Текст] : P. Gupta, and P.R. Kumar. – Stochastic Analysis, Control, Optimization and Applications, 1998.

Philips, Thomas K Connectivity Properties of a Packet Radio Network Model [Текст] : Thomas K Philips, Shivendra S. Pandwar, Asser N. Tantawi IEEE Transactions on Information Zlieory, p.1044-1047, September 1989.

Yuan-Chieh Cheng, Critical Connectivity Phenomena in Multihop Radio Models [Текст] : Yuan-Chieh Cheng, Thomas G. Robertazzi, IEEE Transactiorvls on Communications, vo1.37.

Gilbert, E. N. Random plane networks [Текст] : JSoc. Indust. Appl.Math, vo1.9, pp.533-543, December 1961.

Злотов, А.В. Применение апроксимационно-комбинаторного метода для решения задач построения оптимальных сетей с нелинейными функциями стоимости ребер. [Текст] : А.В. Злотов, В.Р. Хачатуров, Сообщения по прикладной математике. М.: ВЦ АН СССР, 1984.

Лотарев, Д. Т. Задача Штейнера для транспортной сети на поверхности, заданной цифровой моделью [Текст] : АиТ. 1980. № 10. С. 104-115.

Ерзин, А. И. Асимптотический подход к решению задачи Штейнера с вогнутой функцией стоимости потока. [Текст] : Препринт № 4. Новосибирск: Ин-т мат. СО АН СССР, 1983.

Кофман А. Введение в теорию нечетких множеств / А. Кофман. – М.: Радио и связь, 1982. – 432 с.





ISSN 2410-7336 (Online)

ISSN 2311-7249 (Print)