OPTIMIZATION OF DUTY METEOROLOGIST WORK USING FORECASTER AUTOMATED WORKSTATION

Hryhorii H. Pylypovych, Viktor L. Shevchenko, Andrii S. Drovnin, Rafil R. Musin, Oleksandr L. Oliinyk

Abstract


The priority directions of science and technology in Ukraine for the period till 2020 indicated information and communication technologies, so optimization of duty meteorologist work should include a number of specific measures to minimize the human factor in the chain “observation – processing – forecasting - transfer – bringing – to consumers and actual prognostic meteorological information”. Work in technical areas of activity is increasingly becoming automated, so meteorologists should be familiar with the basic methods of observation and devices, use computer devices, processing applications and data dissemination to know and be able to apply different production automated systems, workstations, processing, display and dissemination technologies.

During the last 20 years in the meteorological services of several countries the relevant software is developed to provide effective weather forecasting technology and time-tested calculation methods were laid in these software systems as separate structural elements. The combination of calculation methods for prediction of dangerous weather phenomena using predictive data is the way to significantly improve the quality of weather forecasts for airfields and areas of operations.

The aim of this study is to determine the prognostic data processing tools and recommendations for a duty meteorologist on using these data for meteorological support of aviation flights.

This article establishes the volume of processed meteorological data, that enters the weather service in different periods of time, the analysis of experience of aviation meteorological support at different levels, proposes treatment prognostic data and making recommendations to the meteorologist on duty at the meteorological service for aviation using workstation forecaster.

Therefore, the measures of functionality test of existing software which are used for the purposes of aviation meteorological support were conducted. Further action needs to be improved the action algorithm of duty meteorologist for building prognostic baric topography maps, calculate temporal changes meteovalues, building predictive aerological diagrams and determine the upper limit of the cloud.


Keywords


forecast; forecast charts; forecasting centers; aerological diagram; satellite image; vertical temperature gradient; meteorological information

References


On priority directions of science and technology. [Pro priorytetni napriamy rozvytku nauky i tekhniky], Verkhovna Rada Ukrainy, Kyiv, Available from http://zakon3.rada.gov.ua/laws/ show/2623-14.

Requirements for training aviation meteorological personnel (2010), [Vymohy do pidhotovky aviatsiinoho meteorolohichnoho personalu], Nakaz Derzhavnoi hidrometeorolohichnoi sluzhby, № 60.

SADIS User Guide (2012), Prepared by the ICAO Satellite Distribution System Operations Group (SADISOPSG). – 5th ed. – June 2012 [Amendment No. 1 endorsed by SADISOPSG/18]. – Montreal: International Civil Aviation Organization, 105 p.

Digital Atmosphere (2007), Meteorological Analysis Software. User Manual. – Edition 001, Texas, Garland: Weather Graphics Technologies, 165 p.

Automated system for processing operational hydrometeorological information (GIS Hydromet). Forecaster workstation (1999), [Avtomatizirovannaya sistema obrabotki operativnoy gidrometeorologicheskoy informatsii (GIS GIDROMET). ARM sinoptika], Instruktsiya po ekspluatatsii, Kiev, GNPP “Spetsavtomatika”, 25 p.

Grachev N. R., Dikinis A. V., Ivanov M. E., Kuzmin V. A., Smyishlyaev S. P., Сурков А. Г. (2011), Automated information system “Weather monitor” early warning of severe weather in Saint-Petersburg and Leningrad region, using the assimilation of diverse meteorological information. [Avtomatizirovannaya informatsionnaya sistema «MeteoMonitor» rannego preduprezhdeniya ob opasnyih yavleniyah pogodyi v Sankt-Peterburge i Leningradskoy oblasti, ispolzuyuschaya usvoenie raznorodnoy meteorologicheskoy informatsii], Nauchnyiy servis v seti Internet: ekzaflopsnoe buduschee: Trudyi Mezhdunarodnoy superkompyuternoy konferentsii (Novorossiysk), МGU, Мoscow, pp. 432–438.

Manual on Codes. International codes. (2011), [Nastavlenie po kodam. Mezhdunarodnyie kodyi], Тоm I.2 (Dopolnenie II k Tehnicheskomu reglamentu VMO), Chast В – Dvoichnyie kodyi, Chast С – Obschie elementyi dvoichnyih i bukvenno-tsifrovyih kodov, VMO, № 306, Zheneva, Vsemirnaya Meteorologicheskaya Organizatsiya, 844 p., ISBN 978-92-63-40306-3.

Staniforth A., Wood N. (2008), Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model // J. Comput. Phys, Vol. 227, pp. 3445–3464.


GOST Style Citations


Про пріоритетні напрями розвитку науки і техніки [Електронний ресурс]. – Електрон. дан. – К.: Верховна Рада України. – Режим доступу: http://zakon3.rada.gov.ua/laws/show/2623-14, вільний. Назва з екрану.

Вимоги до підготовки авіаційного метеорологічного персоналу. Наказ Державної гідрометеорологічної служби від 28.10.2010 р. № 60.

SADIS User Guide (2012), Prepared by the ICAO Satellite Distribution System Operations Group (SADISOPSG). – 5th ed. – June 2012 [Amendment No. 1 endorsed by SADISOPSG/18]. – Montreal: International Civil Aviation Organization, 105 p.

Digital Atmosphere (2007), Meteorological Analysis Software. User Manual. – Edition 001, Texas, Garland: Weather Graphics Technologies, 165 p.

Автоматизированная система обработки оперативной гидрометеорологической информации (ГИС ГИДРОМЕТ). АРМ синоптика. Инструкция по эксплуатации. – К.: ГНПП “Спецавтоматика”, 1999. – 25 с.

Грачев Н. Р., Дикинис А. В., Иванов М. Э., Кузьмин В. А., Смышляев С. П., Сурков А. Г. Автоматизированная информационная система “МетеоМонитор” раннего предупреждения об опасных явлениях погоды в Санкт-Петербурге и Ленинградской области, использующая усвоение разнородной метеорологической информации // Научный сервис в сети Интернет: экзафлопсное будущее: Труды Международной суперкомпьютерной конференции (19–24 сентября 2011 г., г. Новороссийск). – М.: Изд-во МГУ, 2011. – C. 432–438.

Наставление по кодам. Международные коды. Том I.2 (Дополнение II к Техническому регламенту ВМО). Часть В – Двоичные коды. Часть С – Общие элементы двоичных и буквенно-цифровых кодов. – ВМО – № 306. – Издание 2011 г. Обновлено в 2012 г. – Женева: Всемирная Метеорологическая Организация, 2011. – 844 с. – ISBN 978-92-63-40306-3.

Staniforth A., Wood N. (2008), Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model // J. Comput. Phys, Vol. 227, pp. 3445–3464.





ISSN 2410-7336 (Online)

ISSN 2311-7249 (Print)