joint aviation group, complex mechanical system, classical mechanics, dynamics of mechanical systems, differential equation, configuration control, combat group formation


Today, more information appears about joint flights of manned and unmanned aviation to perform a common task. The benefit of this symbiosis lies in increasing the effectiveness of the aviation combat mission, saving the life of personnel, reducing the cost of completing a mission, increasing the ability to restore combat effectiveness, etc. But the problem arises of how to manage the formation of joint aviation groups of manned and unmanned aviation in flight? What mathematical apparatus exists today that will make it possible to effectively, in accordance with certain criteria, manage aviation as part of joint aviation groups?

The aim of the article is to solve the above problem by applying the provisions of the theories of classical mechanics and dynamics of complex mechanical systems. The relevance of the problem is explained by the fact that among the large number of problems associated with the control of complex mechanical systems, the problem of forming the required (given) configuration is the most popular and multivariate, depending on the initial conditions.

The ultimate goal of formalizing the process of forming a joint aviation group will be the formation of a configuration of a complex mechanical system by means of two-criteria optimization in a minimum time with a minimum of energy consumption. In this case, the motion of each of the elements of the system will be described by differential equations.

The proposed procedure for solving the problem of optimal configuration control of a joint aviation group of manned and unmanned aviation forms the basis of the method a joint aviation group forming, in order to reduce the time required for calculations, it can be implemented in a neural network, and will increase the overall efficiency of symbiotic (joint) combat mission of manned and unmanned aviation.


Голдстейн Г. Классическая механика. – М.: Наука, 1975. – 415 с.

Парс А.А. Аналитическая динамика. – М.: Наука, 1971. – 635 с.

Раус Э. Динамика системы твердых тел. Пер. с англ. в 2-х томах. Том 1. Под ред. Ю.А. Архангельского и В.Г.Дёмина. – М.: Наука. Главная редакция физико-математической литературы, 1983. – 464 с.

Ланцош К. Вариационные принципы механики. – М.: Мир, 1965. – 408 с.

Артюшин Л.М. Задачи управления конфигурацией механической системы // Прикл. механика. К.: АН УССР, 1987. – 23, № 2. – С. 89–95.

Артюшин Л.М. Оптимальное управление формированием конфигурации механической системы. Докл. АН УССР. Кибернетика и вычислительная техника. Серия А. Физ.-мат. и техн. науки. К.: АН УССР, 1987. – № 11. С. 65–68.

Коренев В.Г. Цель и приспособляемость движений. – М.: Наука, 1974. – 528 с.

E. Bakker, H. Pacejka, L. Linder: A new tyre model with an application in vehicle dynamics studies. SAE Paper 890087 (1989).

Аюпов В.В. Математическое моделирование технических систем: учебное пособие. – Пермь: ИПЦ «Прокростъ», 2017. – 242 с.

Смолин И.Ю. Основы аналитической динамики (введение в аналитическую механику). Курс лекций. – Томск: ТГУ, 2007. – 32 с.

Mastinu Giampiero, Gobbi Massimiliano, Miano Carlo. Optimal Design of Complex Mechanical Systems: With Applications To Vehicle Engineering (2007), 403 р.

S.S. You, Y.H. Chai: Multi-objective control synthesis: an application to 4ws passenger vehicles. Mechatronics 9 (1999).

Крутько П.Д. Обратные задачи динамики управляемых систем: Линейные модели. – М.: Наука, 1987. – 304 с.

Павлов В.В. Инвариантность и автономность нелинейных систем управления. – К.: Наук. думка, 1971. – 270 с.

Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Т.1. – М.: Мир, 1986. – 349 с.


2021-05-28 — Updated on 2021-06-09




Military space and geoinformation technologies