PECULIARITIES OF CONSTRUCTION OF MATHEMATICAL MODEL OF DETERMINATION OF PARAMETERS FOR INTERCEPTION OF AIR TARGETS

Authors

DOI:

https://doi.org/10.33099/2311-7249/2020-39-3-5-10

Keywords:

parameters of planned interception, decision maker, fuzzy logical system, decision making, knowledge, knowledge formalization, guidance method

Abstract

The article proposes an approach to formalize knowledge about the process of determining the parameters of the planned interception using heuristic methods, which are the best in terms of practice, experience, intuition, knowledge of decision makers when aiming fighters at air targets, and looking for solutions within some subspace of possible solutions. The proposed mathematical model allows to formalize the factors that are taken into account when guiding fighters, in the form of linguistic and interval-estimated parameters for each option, which allow to take into account the uncertainty. The initial data of the method is a recommendation regarding the appropriate method of guidance, the hemisphere of the attack of the fighter during guidance. Decisions on the application of the appropriate method of guidance is possible only after the analysis of the conditions of hostilities, the tactical position of the fighter at the time of detection of air targets, taking into account the dynamic characteristics of each method of guidance. It is revealed that automation of information preparation, formation of various variants of application of parameters of the planned interception, is possible at the expense of realization of the corresponding system of support of decision-making. It is substantiated that a logical-linguistic production hierarchical model is expedient as a mathematical model for determining the parameters of interception..

References

1. Kaminskiy, V.V., Analysis of application of UAF in modern armed conflicts on East of Ukraine / V.V. Kaminskiy, V.V. Turin, // Science and defensive. - 2017. - № 3 (4). - P.4-8.

2. Stepanov, G.S., Kaminsky, V.V.,Pavlenko, M.A. (2018), “Take a look at the problematic power supply of the Reconciled Forces in the prototype defense”, [Pohlyady otnosytelʹno problemnykh voprosam! Zastosuvannya Povitryanykh Syl v protipovitryaniy oboroni], Science and Technology of the Air Forces of the Armed Forces of Ukraine, No. 1(30), pp.18-23.

3. Kaminsky, V.V., (2014), “The fight against air terrorism must begin with land”, [Borotba z povіtryanim terorizmom maє pochinatisya z zemlі], Science and technology of the Air Forces of the Armed Forces of Ukraine, No. 1(14), pp. 16-23.

4. Olizarenko, S.A., Brezhnev, Ye.V., Perepelitsa, A.V. (2010), “Nechetkiye mnozhestva tipa 2. Terminologiya i predstavleniye” [Nechitki mnozhyny typu 2. Terminolohiya i uyavlennya], Systems for processing information, VIP. 8(89). pp. 131–140.

5. Olizarenko, S.A., Perepelitsa, A.V., Kapranov, V.A. (2011), “Interval fuzzy sets of type 2. Terminology, representation, operations” [Interval'nyye nechetkiye mnozhestva tipa 2. Terminologiya, predstavleniye, operatsii], Systems for processing information, VIP. 2 (92), pp. 39 - 45.

6. Korolyuk, N., Pershin, A. (2019), ”Ground of modern method in relation to the avtomatic processes of making decision for by the aviation’s” [Osnova suchasnoho metodu shchodo avtomatychnykh protsesiv pryynyattya rishennya aviatsiyeyu], Collection of scientific works, №1 (59), pp. 32-39.

7. Saaty, T., (2009), “Structures in decision making: On the subjective geometry of hierarchies and networks [on line]”, European Journal of Operational Research, vol. 199, is. 3, pp. 867–872.

8. Korolyuk, N.O., Korolov, R.V. and Korshets, O.A., (2017), “Procedura formalіzacії danih, yakі vikoristovuyut'sya pri opisі procesu upravlіnnya ruhom povіtryanih ob’єktіv”, [Procedure for formalizing data used in describing the process of controlling the movement of air objects], Communication, radio engineering, acoustics and navigation. pp. 103-106.

9. Korolyuk, N., (2017), “An approach to prediction of the telecommunication network quality parameters under the conditions of non-stochastic uncertainty”, Telecommunications and Radio Engineering, Issue 11. Volume 76, pp. 1027-1032.

10. Korolyuk, N.O., Sinyavsky, V.V. and Haustov, D.O. (2017), “Udoskonalennya programnogo zabezpechennya kompleksіv zasobіv avtomatizacії pri rozpіznavannі tipu povіtryanogo ob’єkta”, [Improvement of software of complexes of automation means when recognizing the type of air object], Systems of armament and military equipment, No. 1(49), pp. 67-80.

11. Timochko, O.I., and Zuyev, P.P. (2017), “Metod ocіnki stupenya nebezpeki neshtatnih situacіj u povіtryanomu prostorі”, [Method of estimation of the degree of danger of abnormal situations in the air space], Science and technology of the Air Forces of the Armed Forces of Ukraine, No. 1(26), pp. 49-53.

12. Yarushek, V.E., Prokhorov, V.P., Mishin, A.V. and Sudacov, B.N. (2011), “Teoreticheskie osnovy avtomatizacii processov vyrabotki reshenij v sistemah upravleniya”, [Theoretion bases of automation of decision-making processes in control systems], KNAFU, 355 p.

13. Rotshtein O. P., (2006) “Diahnostyka na bazi nechitkikh vidnoshenʹ v uslovyyakh nevizna-chenosti”, [Diagnosis based on fuzzy relationships in conditions of uncertainty ], Vinnica, MD, 275 p.

14. Korolyuk, N., (2014) , “Hybrid model of knowledge for situation recognition in airspace”, Automatic Control and Computer Sciences, Vol. 49, pp.16-25.

15. Alimpiev, A., (2017), “Selecting a model of unmanned aerial vehicle to accept it for military purposes with regard to expert data” P.Berdnik, N.Korolyuk, O.Korshets, M. Pavlenko, Eastern-European Journal of Enterprise Technologies ISSN 1729-3774. - №1/ 9 (85 рр 53-60.

16. Hagras, H., Introduction to Interval Type-2 Fuzzy Logic Controllers – Towards Better Uncertainty Handling in Real World Applications / Hani Hagras, Christian Wagner // IEEE eNewsletter. Systems, Man and Cybernetics Society. – Issue 27. –June 2009.

17. Mendel, J.M., Interval Type-2 Fuzzy Logic Systems Made Simple / J.M. Mendel, R.I. John, Feilong Liu // IEEE Transactions on Fuzzy Systems. – December 2006. – Vol. 14, no. 6. – Р. 808-821.

18. Permiakov, O., Korolyuk, N. (2018), “Informatsiyno – telekomunikatsiyni tekhnolohiyi i suchasna zbroyna borotʹba” [Information and telecommunication technologies and modern armed struggle], Scientific and technical conference of young scientists "Actual problems of information technologies", Kiev, MD, pp. 5-6.

19. Mendel, J.M., Standard Background Material About Interval Type-2 Fuzzy Logic Systems / J.M. Mendel, H. Hagras, R.I. John // IEEE CIS Standards Committee [Электронный ресурс]. – Режим доступа к ресурсу: http://ieee-cis.org/technical/standards/.

20. Wu, Н., Uncertainty Bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems / Н. Wu, J.M. Mendel // IEEE Transactions on Fuzzy Systems. – Оctober 2002. – Vol. 10, no. 5. – Р. 622-639.

21. Wu, D., Enhanced Karnik-Mendel Algorithms / D. Wu, J.M. Mendel // IEEE Transactions on Fuzzy Systems. – August 2009. – Vol. 17, no. 4. – Р. 923-934.

22. Mendel, J.M., On centroid calculations for Type-2 Fuzzy Sets / J.M. Mendel // Appl. Comput. Math. – 2011. – V.10, nо.1, Special Issue. – Р. 88-96

Published

2020-12-30

Issue

Section

Military cybernetics and system analysis