Imitation elements in the Lanchester model equations

Олександр Олександрович Машкін


The article gives a brief overview of the possible scope of application of modifications of the Lanchester type models, and also considers some features of the use of simulation elements and numerical solution of differential equations of such models in stochastic formulation. The interest to the models of the Lanchester type, which is traced by the publications in the thematic periodicals, testifies to the effectiveness of such apparatus for solving the problems of operational forecasting of changes in the number of opposing groups during the combat operations. Stochastic formulation allows to simulate in a certain way the influence of random factors and to take into account the elements of uncertainty that influence the dynamics of changes in the number of opposing factions, and which to some extent are present in any combat operations. In contrast to deterministic models, stochastic models require the use of special numerical methods, the choice of a particular model can be justified by the requirements for the degree of their convergence on the integration interval. Evaluation of the convergence can also serve to verify the correctness of the software implementation of the selected method. The article considers a comparative example of using the Milstein method for numerical solution of the Lanchester model differential equations in stochastic formulation.


simulations in Lanchester models; stochastic differential equations; numerical solution methods; convergence of the method


Gorevich B.N. (2010), The use of imitation elements in differential models of military operations. [Primeneniye elementov imitatsii v differentsial’nykh modelyakh voyennykh deystviy], Armament and Economics, No. 2(10), pp. 31-41.

Buravlev A.I. (2009), Differential equation for the quantitative ratio of the numbers of the warring parties. [Differentsial'noye uravneniye dlya kolichestvennogo sootnosheniya chislennostey protivoborstvuyushchikh storon], Armament and Economy, No. 4(8), pp. 4-8.

Novikov D.A. (2012), Hierarchical models of hostilities. [Iyerarkhicheskiye modeli voyennykh deystviy], International Services Management,Moscow, Iss.37, pp. 25-62.

Mytiukov N.V. (2008), On the question of the typology of Lanchester models. [K voprosu o topologii lanchesterskikh modeley], Circle of ideas: interdisciplinary approaches in historical computer science,Moscow, pp. 375-399.

Chuyev V.YU, Dubogray I.V. (2016), Models of bilateral military operations of numerous factions. [Modeli dvustoronnikh boyevykh deystviy mnogochislennykh gruppirovok], Mathematical Modeling and Numerical Methods, No. 9, pp. 89-104.

Kuznetsov D.F. (2010), Stochastic differential equations: theory and practice of numerical solution. [Stokhasticheskiye differentsial'nyye uravneniya: teoriya i praktika chislennogo resheniya],PolitechnicalUniversity,St. Petersburg, 816 p.

GOST Style Citations

1. Горевич Б.Н. Применение элементов имитации в дифференциальных моделях военных действий / Б.Н. Горевич // Вооружение и экономика. – М., 2010. – № 2(10). – С. 31-41.

2. Буравлев А.И. Дифференциальное уравнение для количественного соотношения численностей противоборствующих сторон / А.И. Буравлев // Вооружение и экономика. – М., 2009. – № 4(8). – С. 4-8.

3. Новиков Д.А. Иерархические модели военных действий / Д.А. Новиков // Управление большими системами: сб. трудов. – М., 2012. – Вып. 37. – С. 25-62.

4. Митюков Н.В. К вопросу о типологии ланчестерских моделей / Н.В. Митюков // Круг идей: междисциплинарные подходы в исторической информатике. – М., 2008. – С. 375-399.

5. Чуев В.Ю. Модели двусторонних боевых действий многочисленных группировок / В.Ю. Чуев, И.В. Дубограй // Математическое моделирование и численные методы. – 2016. – № 9. – С. 89-104.

6. Кузнецов Д.Ф. Стохастические дифференциальные уравнения: теория и практика численного решения / Д.Ф. Кузнецов. – СПб, 2010. – 816 с.

ISSN 2410-7336 (Online)

ISSN 2311-7249 (Print)