RATIONAL COMPROMISE SEARCHING METHOD IN ONE CLASS OF MULTIOBJECTIVE OPTIMIZATION PROBLEM IN EVALUATION OF INDETERMINATE OBJECTIVES SET BY THE FUNCTIONS OF ONE VARIABLE

Oleh V. Borovyk, Liudmyla V. Borovyk, Mykola V. Krasovsky

Abstract


Evaluation of indeterminate forms is a current problem for a significant class of formalized system analysis tasks. Formally, the problems of indeterminate forms evaluation in the system analysis and the operations research theory are largely similar. However, there are also fundamental differences that lie in the following. The problems of operations research have a greater degree of formalization, since they usually a priori provide all the restrictions, conditions, outcoming data and mathematical models. In system analysis problems, part of restrictions, conditions, outcoming data have not been studied in advance, the information about them is refined in the process of problem formalization and solving. Presently, the task of indeterminate objectives evaluation in multiobjective decision making problems, which are reduced to "soft formal characterization" system analysis problems, remains topical. One of them is the problem of finding a rational compromise in multiobjective optimization for a totality of one variable functions.
The work: determines the class of indeterminate objectives evaluation problems, determined by the functions of one variable; analyzes existing approaches and methods of indeterminate objectives evaluation; clearly outlines the range of problematic issues that occur in their application. The authors’ method of solving a certain class of problems in the defined limits of application has been proposed; its algorithmization and programming as well as its application evaluation based on various examples have been carried out.


Keywords


system analysis, multiobjective optimization, uncertainty of objectives, Pareto region, formalization, rational compromise

References


1. Nagel E., Newman D. Theorem of Gödel. [Teorema Hedelia] - M.: Znanie, 1970. - 63 p.

2. Zgurovsky M. Z., Pankratova N. D. Fundamentals of System Analysis. [Osnovy systemnoho analizu] - K.: BHV Publishing group, 2007. - 544 p.

3. Moiseev N. N. Mathematical problems of system analysis. [Matematycheskye zadachy systemnoho analyza] – M.: Nauka, 1981. - 488 p.

4. Saati T. Decision making. Hierarchies analysis method. [Pryniatye reshenyi. Metod analyza yerarkhyi] – M.: Radio and Communications, 1993. - 278 p.

5. Ventzel E. S. Study of operations. [Issledovanie operatsyi]. - M.: Soviet Radio, 1972. - 552 p.

6. Borovyk O.V., Borovyk L.V. Study of Operations in Economics: Textbook. [Doslidzhennia operatsii v ekonomitsi: Navchalnyi posibnyk]. - K.: Center for Educational Literature, 2007. - 424 p.

7. Sergienko I.V. Mathematical models and methods for solving discrete optimization problems. [Matematycheskie modeli i metody reshenia zadach diskretnoi optimizatsii] - K.: Naukova Dumka, 1985. - 384 p.

8. Vasiliev F.P. Numerical methods for solving extremal problems. [Chislennye metody reshenia ekstremalnykh zadach] – M.: Nauka, 1988. - 552 p.

9. Borovyk O.V., Borovyk L.V., Matokhniuk L.O. Higher Mathematics: elements of linear and vector algebras. Analytical geometry. Part 1: Tutorial. [Vyshcha matematyka: elementy liniinoi i vektornoi alhebry. Analitychna heometriia. Chastyna 1: Navchalnyi posibnyk] - Khmelnytskyi: NADPSU Publishing House, 2015 - 488 p.

10. Kurilin B.I. On the solution of the Chebyshev approximation problem for an incompatible system of nonlinear equations // Journal of Computational Mathematics and Mathematical Physics. [K resheniu chebyshevskoi zadachi priblizhenia dlia nesovmestnoi sistemy nelineinykh uravnenii // Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki] – O.: 1970. T. 10. - № 1. S. 3-14.

11. Remiz E. Ya. Fundamentals of numerical methods of Chebyshev approximation. [Osnovy chislennykh metodov chebyshevskoho priblizhenia] - K.: Naukova Dumka, 1969. - 624 p.

12. Rambo J., Blaha M. UML 2.0 Object-Oriented Modeling and Development / J. Rambo, M. Blaha; - 2nd ed. -St. Petersburg: Piter, 2007. - 544 p.

13. McDonald, Matthew. WPF 4: Windows Presentation Foundation in NET 4.0 with examples for C# 2010 for professionals: - M.: LLC "I.D. William", 2011. - 1024 p.

14. Johnson Bruse Professional Visual Studio 2013/Bruse Johnson - Indianapolis: John Wiley & Sons, Inc., 2014 - 1048 p.


GOST Style Citations


1. Нагель Э., Ньюман Д. Теорема Геделя. – М.: Знание, 1970. – 63 с.

2. Згуровський М. З., Панкратова Н. Д. Основи системного аналізу. – К.: Видавнича група BHV, 2007. – 544 с.

3. Моисеев Н. Н. Математические задачи системного анализа. – М.: Наука, 1981. – 488 с. 4. Саати Т. Принятие решений. Метод анализа иерархий. – М.: Радио и связь, 1993. – 278 с.

5. Вентцель Е. С. Исследование операций. М.: Советское радио,1972. – 552 с.

6. Боровик О.В., Боровик Л.В. Дослідження операцій в економіці: Навчальний посібник. – К.: Центр учбової літератури, 2007. – 424 с.

7. Сергиенко И. В. Математические модели и методы решения задач дискретной оптимизации. – К.: Наук. думка, 1985. – 384 с.

8. Васильев Ф. П. Численные методы решения экстремальных задач. – М.: Наука, 1988. – 552 с.

9. Боровик О. В., Боровик Л. В., Матохнюк Л. О. Вища математика:: елементи лінійної і векторної алгебри. Аналітична геометрія. Частина 1: навчальний посібник. – Хмельницький: Видавництво НАДПСУ, 2015. – 488 с.

10. Курилин Б.И. К решению чебышевской задачи приближения для несовместной системы нелинейных уравнений // Журнал вычислительной математики и математической ф изики. -0 1970. Т. 10. - № 1. С. 3-14.

11. Ремез Е.Я. Основы численных методов чебышевского приближения. – К.: Наук. думка, 1969. – 624 с.

12. Рамбо Дж., Блаха М. UML 2.0 Обьектно-ориентированое моделирование и разработка / Дж. Рамбо, М. Блаха; – 2-е изд. – СПб.: Питер, 2007. – 544 с.

13. Мак-Дональд, Мэтью. WPF 4: Windows Presentation Foundation в .NET 4.0 с примерами на С# 2010 для профессионалов: Пер. с англ. – М.: ООО "И.Д. Вильяме", 2011. – 1024 с.

14. Johnson Bruse Professional Visual Studio 2013 / Bruse Johnson – Indianapolis: John Wiley & Sons, Inc., 2014. – 1048 p.





ISSN 2410-7336 (Online)

ISSN 2311-7249 (Print)