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MULTICRITERIA OPTIMIZATION OF DYNAMIC CONTROL SYSTEMS 

 
The article deals with the dynamic control system. In such systems, the criterion of the quality of 

management is a functional defined on its decisions. Extremalization functionals is subject to variations 
ischesleniya. In the case of multicriterion problems solving variational problems repeatedly usugublyayutsya 
necessity extremalization vector functionals. To solve this problem developed multiobjective nonlinear scheme of 
compromise on the basis of rational organization. 

It has been shown that one of the disadvantages of the principles of homogeneity is that they are not the 
"economical". Achieving the next level of the relative loss is often implemented at the cost of a significant 
increase in their overall level. While developers are particularly interested in saving the total consumption of 
resources in the management system, the use of the integral optimality principle leads to a sharp difference 
between the levels of the individual losses. 

The nonlinear scheme of compromise offers new scope for solving multicriteria problems in different 
statements. It becomes particularly desirable in cases where the dynamic control system operates in a wide 
range of possible variation of the external signals, or when the situation is indeterminate or variable. 

Mathematical models were shown in the examples. 
Keywords: control, multicriteria optimization, variational problem, nonlinear trade-off scheme, objective 

function, nonlinear criterion function, rational organization. 
 

Introduction 
In the synthesis of complex modern dynamic 

systems, account has to be taken of widely different, 
often contradictory, conditions on the system 
performance; i.e., we urgently need to develop a 
formalized approach to the solution of multicriteria 
variational problems. 
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Problem formulation. Given the system of 
differential equations describing the behavior of the 
control object 

),(f)t,z,x,u,x(f
dt

dx g                      (1) 

where  is the state vector, is the 

control vector,  is the vector of given 

signals,  is the vector  of initial conditions, 

 is the final state vector,  is the 

vector of disturbing forces, 

)t(xx 

t(xx0 

)T(

)t(uu 

)t(zz 

)t(xx gg 

)0

t

xxf 
]T,t[ 0  is time, and f is 

the vector function of generalized force. 

The external conditions  and z are 
specified in some form. 

f0g x,x,x

Let the given set of partial performance criteria of 
control system (1) form the vector 

n
1ii )I(I  .                                (2) 

Each of the partial criteria is a functional 
, defined on the solutions of system 

of differential equations (1) with a control from the 
class of admissible controls U. The vector of partial 
criteria is restricted to an admissible domain  

]n,1[i),(II ii 

)I(MI .                                   (3) 

The multicriteria variation problem amounts to 
finding the extremals  

)I(M*I,U*u],T,t[t)},t(*u),t(*x{ 0  ,       (4) 
for which vector functional (2) is optimized. For a 
practical solution of the problem, special 
supplementary assumptions need to be made. 

Analysis of recent research and publications. 
We can assume without loss of generality that all the 
partial criteria require minimization, in which case 
they can be referred to for brevity as losses 
accompanying the control process. For each partial 
criterion 0)(Ii  , the upper bound of the variation 
needs to be known: 

]n,1[i,B)(I ii  .                          (5) 
Information about these bounds is part of the 
mathematical description of the object. 

There may be restrictions on other control system 
functionals, which for some reason do not belong to 
the vector (2); then, it is desirable to widen relation (5) 
and write instead: 

,ns],s,1[k,A)( kk                    (6) 

where k()0 is in general a bounded functional of 
the control system. We shall extend the concept of 
“loss” to expression (6): we shall assume that, when a 
limit Ak is reached with respect to any bounded 
functional k, the system operation is equally 
endangered, and that violation of any of inequalities 
(6) leads to failure of the system. In short, the 
admissible domain (3) is mapped by expression (5), or 
in the widened form, by the system of inequalities (6). 
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To solve constructively the multicriteria synthesis 
problem we shall use the method of convolution of the 
partial criteria, whereby the optimization of vector 
functional (2) is reduced to minimization of some 
scalar criterion function (I).There are two different 
ways of convolution of the criteria [1,2]. The first 
consists in choosing heuristically the type of criterion 
function, which is here called the generalized criterion 
(it is usually a linear function of the partial criteria, 
while various measures of closeness to the ideal result 
may be used). The parameters (coefficients) of the 
generalized criterion are chosen on the basis of the 
relative importance of the partial criteria. 

The second method consists in using a system of 
axioms for proving the existence of a criterion 
function (here it is called the usefulness function) of a 
special kind. In practice, it is almost always a linear 
function, though in actual fact the axioms about the 
independence of the partial criteria are most usually 
violated, in which case, from point of view of 
prescriptive theory of usefulness, we are not strictly 
justified in using a linear form. The coefficients of the 
usefulness function are determined in the light of 
information about the preferences of the person 
making the decision. 

If we leave aside the actual ways in which the 
criterion function is determined, the generalized 
criterion and the usefulness function can be taken to 
have the same meaning. 

To extend the class of problems considered, we 
shall make weaker assumptions about the criterion 
function than are made in the usual approach. We 
shall assume that (I) is not known a priori, and that 
all we can say about it is that it is continuous and has 
continuous partial derivatives with respect to its 
arguments in the domain (3). It was shown in [3] that, 
under these assumptions, it is always possible to write 
a nonlinear function (I) in the quasilinear form 





n

1i
ii ,I)I()I(                        (7) 

where i(I) are variable coefficients, forming the 

continuous vector function  .)}I({)I( n
1ii 

In fact, let 

n21 I
...

II
)I(J


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
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

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be the matrix of partial derivatives of function (I). If 
we define 

 
1

0

,d)I(J)I(                    (9) 

it can easily be seen that we have the identity 





n
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ii
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By introducing a nonlinear criteria function, we 
are able to study multicriteria dynamic systems 
designed for operation in situations with widely 
variable external signals, or adaptive multicriteria 
systems, etc. 

The absolute value of the function (I) and of the 
losses composing it depends both on “internal” causes 
(the system structure and parameters), and on the 
external conditions (the disturbing forces, the given 
signals, the boundary conditions); the collection of 
these latter characterizes the system operating mode. 
This mode will be defined as a vector r in the space 

.r)z,x,x,x(R f0g                      (11) 

In view of the physical restrictions described above, 
the vector r will in fact be determined in some domain 
of space R, i.e., .R)r(Sr   

The statement of the multicriteria variational 
problem is very much dependent on the specification 
of the system operating mode. In the most complex 
case, all we know about vector r is that it does not go 
outside the domain S(r). We arrive at a modified, 
usually simplified, statement of the problem when the 
information about the external conditions is refined 
(statistical [4] or determinate description). 

Solution of a complex multicriteria optimization 
problem may be based on an approach whereby a 
simpler “basic” problem, typified by fixed external 
conditions, is solved. Assume that the system is 
designed for operation in a fixed mode, if we are given 
the external conditions 

),r(S}z,x,x,x{rr 0
f
0

0
0

g
00            (12) 

where  are given determinate functions of 

time, and  are the given boundary conditions. 

)t(z),t(x 0
g
0

f
0

0
0 x,x

By specifying the external conditions in this way, 
we can not only simplify solution of the problem as a 
whole, but we can also linearize the criterion function. 
In fact, assuming the existence of an optimal solution 
corresponding to the given external conditions orr  , 

we write the expression for criterion function (7) at the 
optimal point: 





n

1i

o
i

o
i

ooo I)I()I( .             (13) 

Since function (7) is assumed to be continuous, we 
can apply the method of frozen coefficients [5] here, 
whereby, in the neighborhoods of point Io, the 
criterion function is described by the approximate 
equation 





n

1i
i

o
i ,I)I()I(                   (14) 

where  are the “frozen” 

coefficients. In view of (13), we can see that Eq.(14) 
becomes exact at the point I=Io. 

],n,1[i,const)I( i
o

i 

We can thus draw an important conclusion for the 
treatment of multicriteria problems, namely, a linear 
form of criterion function is suitable for the class of 
given (fixed) external conditions. 

In the linear case, the problem of finding the 
criterion function reduces to determining the constant 

coefficients i, i[1,n], forming the vector  .}{ n
1ii 

We make the assumptions about the vector 
function f in expression (1) that are usually made in 
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variational problems, namely, that its components are 
continuous and continuously differentiable with 
respect to the set of variables x, u, t in their given 
domain of variation x,uN(x,u), t[t0,T]. 

The main material research 
Method of Solving "Basic" Problem. In the 

given mode (12), starting from the object equations 
(1) and the criterion function in the form (14) with 
undetermined coefficients , we use one of the 
familiar variational methods for optimizing 
analytically the control process with uU. As a result, 
we obtain an analytic expression for the set of 
extremals 

x=x(t,); u=u(t,),                       (15) 
which depend on the unknown coefficients . 
On substituting (15) in the expression for functionals 
(6), we obtain 

k=k()  Ak, k[1,s],)              (16) 
i.e., the losses accompanying the control process are 
now expressed as functions of coefficients . The fact 
that inequalities (16) are satisfied implies the existence 
of an admissible domain of variation of the 
coefficients of the criterion function: . 

In other words, each extremal of set (15) 
generates, for , in accordance with (16), a 
specific set of losses, that make up the efficiency 
vector 

.)}({)(P s
1kk                   (17) 

The losses may be of different physical kinds and 
different dimensionalities. To be able to compare 
them, we normalize efficiency vector (17) by the 

constraints vector , and obtain the 

relative loss vector 

s
1kk}A{A 

].1,0[,)}(
A

1
{)(P k0

s
1kk

k
0          (18) 

By analyzing and comparing the components of 
vector (18) for different values of coefficients , 
we can isolate a vector P0* = P0(*) which is in some 
sense "better" than the rest, and thereby define the 
vector * of required coefficients of the criterion 
function. Corresponding to these operations we have 
the formal model of vector optimization 

  ,PoptF* 0
1
















                    (19) 

where F-1 is the inverse of the mapping P0 , and 
opt is the operator of optimizing the relative loss 
vector, corresponding to the compromises made in the 
problem. 

We substitute in (15) the optimal values * thus 
found for the coefficients of the criterion function, and 
hence isolate from this set the required extremals x = 
x*(t) and u = u*(t). 
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This describes the general scheme of our analytic 
method for solving the "basic" multicriteria variational 
problem. 

Discussion of Method. Notice that, in the context 
of the above scheme, determination of the coefficients 

extremals of the control process, are both integral 
parts of a single optimization procedure. 

Let us compare our method with anot

of the criterion function, and determination of the 

her approach 
to 

o methods, and 
ind

istic 
nat

m (19) 
tha

the solution of dynamic multicriteria problems, 
described in [6, 7]. Here, given the external 
conditions, the ideal vector lid is found, while the 
criterion function is introduced as a measure of 
closeness to the ideal vector, e.g., in the form of the 
euclidean norm of the vector I- Iid. This approach 
demands the solution of n + 1 variational problems, 
since we have to find the n components of the ideal 
vector of partial criteria, then extremize a complicated 
vector functional. In our method, only one variational 
problem, and that with a functional of conventional 
type, has to be solved, while all the specific features of 
multicriteria optimization make their appearance in 
minimization of a vector function (and not a 
functional), which is much simpler. 

A common feature of the tw
eed, of other methods, is that the method of 

solution of the multicriteria problem contains heuristic 
elements. For instance, it is pointed out in [6] that the 
result of solution depends on the choice of norm in the 
space of optimized functionals. Similarly, in our 
method there is the heuristic choice of the scheme of 
compromises (optimality principle). While the method 
may contain other heuristic elements (choice of 
normalization, allowance for priority), the choice of 
the scheme of compromises is the central feature. 

According to one point of view, the heur
ure of the vector optimization problems is not 

simply a drawback, but is inherent in multicriteria 
problems. If we accept this point of view, we must 
regard as justified the situation in which the result of 
solving the multicriteria problem depends on the 
experience and skill of the person solving the 
problem. While acknowledging the complexity and 
conceptual nature of these problems, we nevertheless 
believe that the key trend in vector optimization is the 
development of methods whereby we can reduce or 
entirely eliminate the heuristic elements in the final 
result of solution of the multicriteria problem. 

Scheme of Compromises. It is clear fro
t, for constructive solution of the vector 

optimization problem, we need to define the scheme 
of compromises (optimality principle), and thereby 
reveal the precise sense in which the vector P0* is 
"better" than the other combinations of relative losses. 
Mathematically, definition of the scheme of 
compromises implies expansion of the optimization 
operator, e.g., in the form 

  Popt 0  ,PYmin 0 
 

            (20) 

where Y is a scalar function of the relative losses. 
rite 

all 

     (21) 

On the basis of the results of [8, 9], we can w
the optimality principles of practical interest in the 

unified integral form 

     





s

1k

h
k00 .,1h,minPopt

40 
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If we put the formal parameter h equal to unity, we 
obtain the integral optimality principle 

If we let h tend to infinity, we obtain the principle of 
uniformity, equivalent to the Chebyshev mo

   



 1k

k00 .minPopt            (22) 
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s

del 

 s,1k
 .maxminopt ok 

 

If we take h  [1, ], we obtain a rang  of opti

                 (23) 

principles, giving partial equalization
i.e., providing a solution, intermediate between the 

relative loss, reducing it to the same 
lev

e mality 
 of the losses, 

two polar schemes of compromises: the Chebyshev 
operator (23), and the integral optimality principle 
(22). It is easily shown that the solutions obtained 
from all the considered schemes of compromises are 
Pareto-optimal. 

Each scheme has its advantages and drawbacks. 
For instance, operator (23) compels us to minimize the 
worst (greatest) 

el as the rest. The relative loss equalization 
principle 

        


s002010Popt       (24) 

implies that the most uniform variation of the level of 
each loss is realized. As an example of this, 
mention a competently designed mechanism that 

sest levels of relative losses is often at the cost 
of a

 
spa

we may 

operates uniformly and at the end of its service life, 
fails simultaneously in each of its sections. It was 
shown in [10] that, if the solution found by means of 
condition (24) belongs to the Pareto domain, then it 
will simultaneously satisfy the min-max principle 
(23). 

One of the drawbacks of uniformity principles is 
that they are not "economical." The achievement of 
the clo

 substantial increase in their overall level. 
While application of the integral optimality 

principle (22) implies that the designer is particularly 
interested in economizing on total consumption of

res and resources in the control system, the 
drawback here is that sharp differences become 
possible between the levels of individual losses. 

Example 1. To illustrate the scope of our method, 
let us take a simple model example. The control object 
is described by the differential equation 

  .consta,fuax
dt

dx
           (25) 

The control system is designed for operation in 
fixed external conditions, and the system
mode r = r0 = {x0, xf} is characterized by the initial 
con

 

 

 
Fu  the solutions of
(2 re impos n the 
functionals (losses) of the system: 

                    (27) 

restricted by the inequality 

process x = x*(t) and u = u*(t) for which 

the vect

 operating 

dition x(0) = x0 and the final small neighborhood 
= ±x(T) = xf. 

The system performance is estimated according to 
the two partial criteria 

(26) 

 Eq. ncfcionals (26) are defined on
5). The following restrictions a ed o

1) The required dynamic accuracy is subject to the 
inequality 

1()=I1()A1;     
2) the energy resources of the system with respect to 
control are 

2()=I2()A2;                         (28) 
3) the time allowed for realizing the control process is 
restricted:  

3()=T  A3.                          (29) 
We pose the problem of finding the extremals of 

the control 

or functiona 1iil 2n)}(I{I   is optimized. 

 To 
elim

where =2. 
We use classical variational calculus fo

the extremals without finding . On the basis of (25) 
orm the Lagrange function 

Euler's equ n (31) ar

To solve the problem, we introduce the criterion 
function F(I), which, since the external conditions are 
fixed, can be written as F(I) =1I1()+2I2().

inate the trivial solutions (1=2=0) we impose 
the extra condition 1 = 1. Then, the expression for the 
criterion function transforms to 

       



0

22
21 ,dtuxIII         (30) 

r finding 

and (30), we f
L=x2+u2+  ,uaxx                   (31) 

where  is the Lagrange multiplier for the 
nonholonomic connection. 

ations for functio e 

.0u2
u

LdL 
dtu





 

         (32) 

From the last equation of (32), we find 

,0ax2
x

L

dt

d

x

L







 



2
and substitute it in (25). Adding the fi


u                                       (33) 

rst equation of 
(32), we obtain the system 

.ax2

,
2

axx









                             (34) 





The characteristic determina
root p, is 

nt of this system, with 

  .02
pa

p 


            (35) 
pa2

1



Hence 

  .
1

app 2


                    (36) 

der only stable solutions, we can write the 
expression for the extremals 

               (37) 



0

41

If we consi

,eC,eCx pt
2

pt
1

 
 
0

2
2

2
1 .dtu)(I,dtx)(I
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where C1 and C2 are coefficients that depend on the 
initial conditions. It follows f
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rom the first of (37) that 
C1 = x0. To find C2, we form the equation 

).2/C(axpxpC)dt/dx( 2
00

10t    (38) 
Hence 

.)pa(x2C 0
2                       (39) 

Starting from (37) and (33), the eneral g expr
remals is 

Fo

we can easily find : 

ls relative 
losses as f

where 

02(p)=(1/A2)

, (44) 

where 

We find the third loss from the first expression of 
(40) after substituting in it the boundary conditions 

=x0e-pT.                      (45) 

ession 
for the ext

x .e)p pt       (40) a(x)p,t(u,ex)p,t( 0pt0  
r our future working, it is more convenient to use 

the function p(y) of (36), rather than the coefficient  
itself; if we know p, 

=1/(p2-a2).                      (41) 
We now obtain the expressions for the relative 

losses: 
01()=1()/A1, 02()=2()/A2, 

03()=3()/A3.                        (42) 
On substituting here expressions (40) for the 

extrema , and using (26)-(29), we obtain the 
unctions of p: 

x

  

0

pt20
1

x

0

2
101 )p/1(bdtex)A/1(dtx)A/1()p(

2
,(43) 

02

1A2/xb  ; 

 2 a(dtu   
x x

0

2pt220
2 p/)pa(cdte)px)A/1(

2

0

02
.A2/xc 2  

xf
From this, recalling (29), we have 

03(p)=(1/A3)lnx0/xf/p=d/p,           (46) 
where d=(1/A3)lnx0/xf. 

r We now form the relative vecto
3s
1kk00 )}p({)p(P 


ct to the chosen scheme of 
com basis of physical 
considerations, the integral optimali

                     (47) 

and optimize it with respe
promises. Assume that, on the 

ty principle (22) 
has been chosen. Optimization of vector (47) with 
respect to the integral optimality scheme amounts to 
minimization of the function 
Y(p)=01(p)+02(p)+03(p)=b/p+c(a-p)2/p+d/p.(48) 

Solution of the equation Y(p)/p=0 leads to the 
result 

.
db

ap*p 2 
                   (49) 

c
We substitute this result in (40) and thereby extract 

from the set of extremals the required extrem
x=x*(t)=x0e-p*t, u=u*(t)=x0(a-p

On

              (52) 

Nonlinear Schem

e optimal solution is being 
sought; as the situati
be 

ximity to their limit. If a loss does reach (or 
exc

ile the possible substantial 
dif

gree of stress 
of 

nonlinear scheme of 
com

cteristic 
(53): 

is clear from (54) that, if a relative loss, e.g., 
m() m[1, s], starts to come close to its li
(unity), then the corresponding term 1/[1 - m
the minimized sum will increase to such an extent that 
mi

ions ,  is convex 
in En; 

4

als 
*)e-p*t.     (50) 

The coefficient * is found from (41), and the 
coefficients of the criterion function are 

1=1, 2=*.                         (51) 
 eliminating time from expressions (50), we obtain 

the optimal control law 
u*=(a-p*)x.            

e of Comprimises. The choice 
of scheme of compromises needs to be related to the 
situation for which th

on changes, corrections need to 
made to the optimality principle [8, 9, 11]. In the 
e of dynamic control systems, the "situation" is 

identified with the "mode," regarded as the set of 
external conditions for which the system is required to 
operate. 

If the dynamic system is designed for operation in 
a stressed mode, the implication is that the external 
signals may be such that one or more losses are in 
close pro

cas

eed) its limit, it is no compensation that the other 
losses meantime remain at a low level (by hypothesis 
of the problem, normal operation of the system is 
disrupted as soon as any constraint is violated). In 
such a situation, the increase of the most dangerous 
loss (i.e., the loss closest to its limit) needs to be held 
back, without regard to any possible increase in the 
other losses. In short, the optimization operator most 
suitable for the stressed operating mode is the 
Chebyshev operator (23). 

On the other hand, if the situation is such that no 
danger can arise of violating the constraints, it is better 
to use the "economical" operator (22); this ensures 
minimal overall losses, wh

ferences in the individual loss levels present no 
danger in this "quiet" situation. Intermediate modes 
demand schemes of compromises that offer varying 
degrees of partial equalization of losses. 

The above analysis is by way of being axiomatic: 
by accepting its recommendations, we can form a 
unified universal scheme of compromises, which can 
be adapted to any situation with any de

the system operating mode. 
We shall characterize the degree of stress by the 

proximity of a relative loss to its limit (unity): 
1-0k()[0;1], k[1,s].                 (53) 

We shall adopt here a 
promises, corresponding to which we have an 

optimization operator dependent on chara











s

1k

1
k00 .)](1[min)(Popt      (54) 

It 
mit 

()] in 

nimization of the sum reduces to minimization of 
just this one (worst) term. But this is equivalent to 
action of the Chebyshev operator (23). On the other 
hand, if the relative losses are remote from unity, then 
the action of operator (54) is equivalent to the action 
of the integral operator (22). 

Let us show that our proposed scheme satisfies the 
condition of Pareto optimality. The proof will use the 
same technique as in [6]. Given: 
1) the set of admissible solut

2 
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2) the solution with respect to the nonlinear scheme of 
compromises 

  
  

;
11k

1k

1
k0








 




3) the set of Pareto-opti

1s k0 










  (55) 


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mal solutions 
   

        .
s,1mk,©,sm,1

k,©:;©
©

k0k0

k0k0K
















 

 (56) 

We want to show that 

 does not 
belong to set K. Then, there is a solution   
such that 

.K   

Assume the contrary, i.e., the solution 
--

     
     .s,1mk,ˆk0k0 

In this case, with 

,sm,1k, 
                (57) 

ˆk0k0 

 , we have the inequality 

      
 

 
s

1k

s

1k

1
k0

1
k0 ,ˆ11          (58) 

which contradicts the definition of solution with 
inear 55). 

Consequently, 

Discussion of Nonlinear Scheme. Form
r the 

 
t the parameter h in (21) is not linked 
n and ha to be specified heuristically. 

equ

e 
sch

e link 
bet

ation of the external signals, or when the 

respect to the nonl scheme of compromises (

.K


   

ally, the 
scope of the range of schemes of compromises fo
operator (54) is similar to that for the unified Integral
scheme (21); bu
with the situatio s 

The nonlinear scheme of compromises has the 
property of being continuously self-correcting as the 
situation (mode) varies. In stressed situations its effect 
is equivalent to the action of the Chebyshev (min-
max) operator, while in quiet situations its action is 

ivalent to that of the integral optimality operator, 
and in intermediate situations it gives varying degrees 
of partial loss equalization. From this point of view, 
the traditional schemes of compromises can be 
regarded as the result of "linearization" of the 
nonlinear scheme at different "working points" 
(situations). This explains, incidentally, why we call it 
the nonlinear scheme; in other respects, it is no more 
nonlinear than, say, the unified integral form (21). 

It must be emphasized that the self-correction of 
the nonlinear scheme according to the situation takes 
place continuously. Leaving aside the unified integral 
form (21), which is very difficult to apply in practical 
situations, the traditional procedure for choosing th

eme of compromises is realized discretely. This 
means that, to the subjective errors in solving a 
multicriteria problem, are added errors connected with 
the quantization of the schemes of compromises. By 
using the nonlinear scheme, we can improve the 
accuracy of solving the "basic" multicriteria problem, 
thanks to the continuity of the self-correction. 

It cannot be said that the use of a nonlinear scheme 
of compromises entirely eliminates heuristic elements 
from the process of solving a multicriteria problem. 

First, there is something heuristic in the acceptance of 
the axioms implied in our above analysis of th

ween situation and choice of optimality principle. 
And second, relation (53) is not the only way of 
characterizing stress, nor is the form (54) of the 
optimization operator unique. Nevertheless, the 
nonlinear scheme does reduce the subjective errors 
implied if the situation has to be taken into account 
when choosing a scheme adequate to the external 
conditions. 

The nonlinear scheme offers new scope for solving 
multicriteria problems in different statements. It 
becomes particularly desirable in cases where the 
dynamic control system operates in a wide range of 
possible vari
situation is indeterminate or variable. 

Example 2. In the conditions of Example 1, let us 
optimize vector (47) with respect to our nonlinear 
scheme of compromises. Assuming that the solution is 
reached inside the given domain of restrictions, we 
solve the equation 

  


 

 s

1k

1
k0 .0p1

p
                (59) 

Recalling the notation (43), (44), (46), we can 
transform Eq. (59) to 

b/(p-b)2  + c(a2-p2)/[p-c(a-p)2]2+d/(p-d)2=0.   (60) 
The required coefficient p* = p is fou
root of Eq. (60). 

numerical data (we omit the 
dim

ondition can take values in the range 
x0 

ely solve the "basic" multicriteria 
problem f

ed mode, when x0 = 15. 

                    

Sub

                     (63) 

losses are 

x=15=1.12(1-2.39)2/2.39=0.90;  (64) 
03

ises in this stressed mode. The simplicity 
of the examp g the 
Cheb ) 
with 

4

nd as the real 

Suppose, for instance, that the system is 
characterized by the 

ensions) 
a=1; A1=50; A2=100; A3=3; xf=1,       (61) 

while the initial c
 [0, 15.5]. 
By using our nonlinear scheme of compromises, 

we can uniqu
or any stress properties of the situation 

(mode). In fact, let us find coefficient p in an 
extremely stress

Using the notation of (43), (44), (46), we have in 
this case 

b=152/250=2.25; 
                             c=152/2100=1.12;                    (62)    

d=(1/3)ln15=0.9. 
stituting data (62) in Eq. (60) and solving it, we 

obtain 
px=15=2.39.    

Here, in accordance with (43), (44), (46), the relative 

01x=15=2.25/2.39=0.94; 
02

x=15=0.9/2.39=0.38.                
For comparison, let us use the Chebyshev scheme 

of comprom
les allows [9] to be used for realizin

yshev model by the unified integral form (21

hh0=log s/log (1+),             (65) 
where  is the relative error of finding the loss. We 
form the function 

3 
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       h
k0 p

r differentiation, we obtain 
bh+c(a2-p2)[c(a-p)2]h-1+dh=0.          (6

The real root of this equation is the solution acco
to the Chebyshev uniformity principle p=. We specify 

   (68) 
We take h 

to be the case in the stressed mode. 

and 0) can be solved 
quite easily. 

1k

and obtain the necessary condition for its minimum 
V(p) /p = 0. Afte

















 pp

c
p

 (66) 
 s hh2h

dpab
pV

7) 
rding 
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 = 0.01, and in accordance with (65), get 
h0=log 3/log (1+0.01)=110.4.         

= 121 and write Eq. (67) in the light of 
(62): 

2.25121+1.12(1-p2)[1.12(1-p)2]121+0.9121=0. (69) 
The real root of this equation is 

p=x=15=2.41,                  (70) 
i.e., the results (63) and (70) are virtually the same, as 
ought 

Notice incidentally that Eq. (69) is of high degree 
 difficult to solve, whereas Eq. (6

In accordance with (49), the integral optimality 
principle gives 

,95.1
12.1

9.025.2
1p 15x 




           (71) 

which implies 
01+x=15=1.15, 02+x=15=0.52, 

03+x=15=0.46.                             (72) 
The integral scheme is thus unusab

stressed situation, since it forces one loss to 
ereas the other losses remain at a 

fairly low
Now take

ini

px=2=3.85.                              (73) 
On

of 
the Chebyshev sc

ally different from (73) and (74). 
It is interesti

hanges. Let 
us divide the r

em 
wit

e system can remain 
ope

n be considered in q fixed 
mo

rom a 

e. If the system operates in the strictly 
designed mode, Eq. (77) is exact. 

If we assume that coefficients 

                         (78) 
whi s for approximati  

 

 

ating function F(I). The first problem 
is 

]. 

We

4

le in this 
go beyond 

its tolerance, wh
 level. 

 an easy mode, corresponding to the 
tial condition x0 = 2. After calculations, we find 

that the coefficient corresponding to the nonlinear 
scheme of compromises has the value 

 using the integral optimality principle in this quiet 
mode, we obtain 

p+x=2=3.81,                              (74) 
i.e., the results are very similar in both cases. Use 

heme in this mode gives 
p=x=2=4.38,                              (75) 

which is substanti
ng to consider how the solutions, 

obtained on the basis of different schemes of 
compromises, behave when the situation c

ange x0[1.5, 15.5] into several 
subintervals, and solve for each the “basic” probl

h the integral, Chebyshev, and nonlinear schemes. 
The results are shown graphically in Fig. 1. It can be 
seen that the solutions p* obtained by the nonlinear 
scheme are the same, at the ends of the range of initial 
conditions, as the solutions obtained by the polar 
schemes: on the left by the integral scheme p+, and on 
the right by the min-max principle p=. At intermediate 
points of the range, the curve p*(x0) lies between the 
p+(x°) and the p=(x0) curves. 

It is useful to compare this picture with the 
corresponding curves of relative loss variation in 
Fig. 2. It can be seen from the latter, in particular, that 

if the nonlinear scheme (or the min-max principle) is 
used in stressed modes, th

rational with values of the initial deviations right 
up to 15.5, whereas, with the integral optimality 
principle, the first loss can go beyond its tolerance 

n with x0 = 14.0. On the other hand, in quiet 
ations, use of the nonlinear scheme gives the same 

relative loss distribution as does the integral scheme; 
this shows that the nonlinear scheme is economical in 
situations where there is no danger of the system 
violating its constraints. 

Nonlinear Criterion Function. If the multicriteria 
system is studied in a wide range (r) of external 
conditions, the criterion function (I) needs to be 
written as a nonlinear relation in partial criteria. 
Let the system operatio

eve
situ

des, corresponding to each of which we have a 
vector 

rj={xjg,xj0,xjf,zj}(r)S(r), j[1,q].      (76) 
We showed above that, with small deviations f
fixed mode, the criterion function can be linearized 
and written as 

   ,q,1j,II i
j
i

j                     (77) 
n

1i

where ij is the coefficient of the i-th partial criterion 
in the j-th mod

],q,1[j,}n
1i   { )j(

i

are known, we obtain as a result of this discussion the 
q combinations 
((1);I1(1),I2(1),...,In(1)),((2);I1(2),I2(2),...,In(2)),..
.,((q);I1(q),I2(q),...,In(q)),           

ch can serve as reference point on
of the criterion function (I) by the approximating
function F(I). 

In short, the proposed scheme demands the
solution of two problems: determination of the 
coefficients {i(j)}i=1n, j[1,q], of the linearized 
criterion function at q fixed modes, and construction 
of the approxim

solved within the framework of the “basic” 
multicriteria problem, an important point being that 
we necessarily have to make use of our nonlinear 
scheme of compromises, with the property of being 
continuously self-correcting. The second problem may 
be solved by least squares. 

Example 3. In the conditions of Examples 1 and 2, 
let the system operating mode r = {x0, xf} be 
characterized by the final state xf = 1 and an initial 
condition that can vary in the domain (r) = (x0) = 
[x0min,x0max] = [1.5, 14.0

We pose the problem of finding the nonlinear 
scalar relation  = (I), connecting the criterion 
function  with the partial criteria I1 and I2, assuming 
that the initial conditions can vary throughout their 
range. 

 consider the system operation in 21 modes (q = 
21); the results are shown in Table 1. We shall seek 

4 
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the approximating function in the class of second-
order interpolation polynomials: 

F(I)=1I1+2I2+3I12+4I22+5I1I2,           (79) 

rpolation polynomial 
are

where {m}m=1s are the unknown coefficients of 
regression. 

In accordance with the method of least squares, the 
unknown coefficients of the inte

 found from the condition for minimizing the sum 
of the error-squares: 

 



1j

jj .FE                          (80) 

Using the necessary condition for a minimum: E 
/m =0, m  [1; 

s 2
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5], we obtain the simultaneous 
system of normal equations: 
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q
21524

2j
13

j
22

j
11

jj
1

.0idemII

,0idemI

,0idemI
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(81) 

Substituting here the numerical data of Table 1, and 
solving system (81) for m}m=15, we obtain  
(I)F(I)=0.6245I1+0.1719I2+0.1430I12+0.0045I22-
0.0535I1I2.                                                              (82) 

Principle of Rational Organization. To perform 
g 

eneral, 

usu

ises are the same (or nearly the 
sam

nd objectively 
to a

mization of the 
eff

or realizing the principle. 

s(x). The local 
crit

                        (83) 
it 

em. 

the control function successfully, given the operatin
conditions, any system must have certain (in g
limited) margins and resources (in the sense of 
strength, temperature, amount of fuel, etc.). In the 

al statement, the limits of the margins and 
resources are regarded as fixed and given. But cases 
are common in practical synthesis of multicriteria 
systems (especially at the early design stages), in 
which the designer has some scope for varying some 
or all of the margins and resources, and selecting a set 
of limits for them which is in harmony with the given 
external conditions. 

Every scheme of compromises reflects a quite 
specific useful property which the designer deems to 
be desirable for the system in the considered situation. 
If the solutions obtained on the basis of different 
schemes of comprom

e), this implies that the margins and resources are 
chosen and utilized so successfully that, in the given 
conditions, the system simultaneously meets all the 
demands made in the different optimality principles, 
i.e., the system is rationally organized. 

When the solutions are identical, the problem of 
selecting the scheme of compromises falls out, and the 

heuristic element disappears from solution of the 
multicriteria problem. The problem of vector 
optimization then reduces completely a

 problem of scalar optimization. 
The principle of rational organization in 

multicriteria problems may be stated as follows: in the 
rationally organized system, given the operating 
conditions, the restricted margins and resources are 
chosen in such a way that opti

iciency vector with respect to different schemes of 
compromises leads to identical (or almost identical) 
solutions. 

Since the principle of rational organization is 
universal and can be used for practical solution of a 
wide variety of multicriteria problems, we shall 
develop in a quite general form the constructive 
apparatus f

Given the set of admissible solutions En in 
which are defined the vectors x = {xi}i=1n of n-
dimensional Euclidean space. The quality of a solution 
is estimated from a set of local criteria, represented by 
scalar functions y1(x), y2(x),...,y

eria form the s-dimensional efficiency vector y 
={yk}k=1s defined in the set . We can assume 
without loss of generality that all the local criteria 
require minimization (in which case we can briefly 
refer to them as losses). We know that the losses are 
bounded: 0  yk(x) Ak, k  [1, s], though the 
concrete values of the bounds Ak are not defined and 
may be chosen from some given admissible set a of 
the constraints vector A = {Ak}k=1s. 

We pose the problem: 1) of finding the optimal 
solution x* belonging to  and optimizing the 
efficiency vector y; 2) of finding the optimal 
constraints vector A*  a, for which the principle of 
rational organization is satisfied. 

We can assert that, if the principle of rational 
organization is satisfied, then the optimal solution will 
belong to the Pareto domain 

K={x*x*;x:yk(x*)yk(x),k[1,ms];yk
(x*)yk(x),k[m+1,s],                    

will simultaneously satisfy all the schemes of 
compromises, leading to Pareto-optimal solutions, and 
it will be unique. 

Hence it follows that, mathematically, realization 
of the rational organization principle is none other 
than degeneration of the Pareto domain K to a single 
point x*, which is the required optimal solution of the 
multicriteria probl

We normalize the efficiency vector by the 
constraints vector and obtain the relative loss vector 

     .A,xyxy
A

1
y s

1kk0

s

k
k

0 






     (84) 
1k

n 
write the expression for the domain of compromises 
(83) as the solution of the parametric progra
problem 

45

Assuming that the convexity conditions hold, 
under which Carlin's lemmas are valid [12], we ca

mming 
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where F-1 is the inverse of the mapping y0x, 
={k}k=1s  is a vector parameter, defined in the set 

.0;1
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point x*, expression (85) must transform to  

    (87) 

in (87) must be invariant with respect 

to the parameters . This sum is only 
ind

For, if the relati
yos = , then, in view of property (86) of the vector 

pendent o
On the other hand, the unique point x* must 

belong to the Pareto domain with any set of 
parameters . In view of the arbitrariness o
parameters, and property (86), we obtain 

       (90) 
Th

   (86) 

Since, when the principle of rational organization 
is satisfied, the Pareto domain K contracts to the

  .A,xyminF*x
s

k0k
1  


 
1kx
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Since the point x* is unique, the sum 
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s
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



1k
k0k A,xy

ependent of these parameters if 
y01(x,A)= y02(x,A)=...= y0s(x,A).         (88) 

ve losses are equal, y01 = y02 = . . . = 

parameter  
s

k 1 , the sum takes the form 
1k

  
  


s

1

s

1k

s

1k
kkk0k 1y     (89) 

and is inde f the parameters .  
k

f the 

1=2=...=s=1/s.               
en, expression (87) takes the form 

    .A,xy
s

1
minFA,xy

s

1
minF*x

s

1k
k0

x

1
s

1k
k0

x

1 





















 







 (91)
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
 

n; hence we can 
cancel the factor 1 /s and obtain 

                 (92) 

y the intersection of 
conditions (88) and (92) with  = 1. Expanding (88), 
we obtain the system of equations 

y0j(x,A)-y0,j+1(x,A)=0, j[1,s-1].      (93) 
Co


s not change the We know that a constant factor doe

position of the extremum of a functio

  .A,xyminF*x
s

k0
1 





 

1kx  

Degeneration of the Pareto domain K to the 
single point x* is represented b

ndition (92) generates the system of equations 

   .n,1i,0A,xy
x

s

1k
k0

i







          (94) 

We hav
m is 

clearly indeterminate in the general case, inasmuch as 
a nondegenerate solution can be obtaine
infinite number of combinations of absolute values of 
the

t be varied. In this case,  is not specified, 
and instead of cond

 the principle of rational organization, we have 
to solve the system of

e s 
opt

f 
rat

.       (97) 

ciple of rational organization; 1) the extremals 
xopt(t) an
coe

 the system 
of 

e to consider (93) and (94) together as a 
simultaneous system of equations. But this syste

d with an 

 constraints. In short, we need to complete the 
definition of the problem with an extra condition, e.g., 

the condition that the l-th relative loss (or in our 
present case, all the relative losses) be equal to a given 
quantity: 

y0l(x,A)=1.                          (95) 
Moreover, in applications one constraint is often 
given: 

Al=Alo                               (96) 
and canno

ition (95) we have to use (96). 
To sum up, to solve a multicriteria problem on the 

basis of
 equations (93), (94), (95), or 

(93), (94), (96). As a result, we obtain the n required 
components of the solution vector x* and th

imal components of the constraints vector A*. 
The above simple and objective method can be 

used if the problem of rational organization has an 
exact solution in a given bounded domain of the 
arguments. If this is not the case, heuristic devices 
have to be employed. Even then, the principle o

ional organization can be utilized constructively 
(for more details on this point, see [13, 14]). 

Example 4. Retaining the other conditions of 
Examples 1 and 2, and taking x0 = 10, assume that the 
designer can select the constraints from the given 
ranges 

A1[0;50], A2[0;200], A3[0;3]
At the end of the control process, we want all the 

relative losses to take the value  = 0.5. 
We pose the problem of finding, in the context of 

the prin
d uopt(t) of the control process; 2) the 

fficient opt of the criterion function; 3) the 
optimal values A1opt,A2opt and A3opt. 

We make calculations on the basis of (31)-(46), 
and obtain expressions for the relative losses. We shall 
assume, first, that the problem has an exact solution, 
and second, that this solution is reached inside the 
given ranges of constraints (97). We form

equations (93), (94), (95): in our present example it 
takes the form 

 

 

 

   
.0

p

d

p

pa
c

p

b

pp

,0
pp

2

030201 























 (98) 

Solving system (98) and substituting the numerical 
data, we obtain Popt = 3.0, b = d = 1.5; c = 0.375. 
Recalling the notation in (43), (44), (46), we find that 
A1opt = 33.3; A2opt = 133.3; A3opt = l.53. 
Comparing these values with the constraint ranges 
(97

4

dpa
c

,0
ppa

c
p

b

2

0302

2

0201









), we see that our assumptions are valid. The 
expressions for extremals (40) are 

xopt(t)=10e-3t, uopt(t)=-20e-3t.        (99) 
The value of the coefficient of the criterion function is 
found from (41): 
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.125.0
13

1

ap

1
222opt 





         (100) 
opt

And finally, a check shows that 010203= 
0.5. 

Example 5.

Conclusions and prospects for further 
research 

The nonlinear scheme of 

 Suppose that, from physical 
considerations, one of the constraints, e.
known to be given: A3 = A3o = 1.00, and cannot be 

itions of Example 4 are retained. 

g., A3, is 

compromises offers new 
sco t 
statements. It becom y desirable in cases 
wh

pe for solving multicriteria problems in differen
es particularl

varied. In this case  is not specified; all the other 
cond

To solve this new problem, we form the system of 
equations (93), (94), (96): 

 
 

ere the dynamic control system operates in a wide 
range of possible variation of the external signals, or 
when the situation is indeterminate or variable. 

When the solutions are identical, the problem of 
selecting the scheme of compromises falls out, and the 
heuristic element disappears from solution of the 
mu

 

.AA

,0
ppp

o
33 








Using the numerical data, solution of t
gives Popt = 3.0; b = d = 2.3; c = 0.575, 
Alopt = 21.7; A2opt = 87.0. 

Since the value popt = 3.0 remains the same as in 
Example 4, the extremals will be given by (99), and 
the

d in (43), (44), (46); we 
obt

dpa
c

b

p

2 

 



         (101) 

lticriteria problem. The problem of vector 
optimization then reduces completely and objectively 
to a problem of scalar optimization. 

The principle of rational organization in 
multicriteria problems may be stated as follows: in the 
rationally organized system, given the operating 
con

,0dpac

,0pacb
2

2





his system 
and hence 

 coefficient  by (100). 
We find the relative losses in this new version by 

substituting the data obtaine

ditions, the restricted margins and resources are 
chosen in such a way that optimization of the 
efficiency vector with respect to different schemes of 
compromises leads to identical (or almost identical) 
solutions. 

Since the principle of rational organization is 
universal and can be used for practical solution of a 
wide variety of multicriteria problems, we shall 
develop in a quite general form the constructive 
apparatus for realizing the principle. 

ain 010203= 0.77. 
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В статье рассматриваются динамические системы управления. В таких системах крит
ества управления представляет собой функционал, определенный на ее решениях. Экстремиз
ионалов является предметом вариационного исчисления. В многокритериальном случае 

трудности решения вариационных задач многократно усугубляются необходимостью экстремизации 

 



Теоретичні основи створення і використання інформаційних технологій 

векторных функционалов. Для решения данной многок итериальной за ачи разработана нелинейная 
схема компромиссов на основе принципа рациональной организации. 

Показано, что одним из недостатков принципов однородности является то, что они не являются 
“экономичный”. Достижение ближайших уровней относительных
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нелин критериальная функция, рациональная 
орган
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твенного увеличения их общего уровня. В то время как разработчики особенно заинтересованы в 
экономии общего потребления ресурсов в системе управления, применение интегрального принципа 
оптимальности приводит к резкому отличию между уровнями отдельных потерь. 

Нелинейная схема компромиссов предлагает новые возможности для решения 
многокритериальных задач в различных постановках. Это становится особенно 

х, когда динамическая истема управлен я работает в ироком иапазоне возмо ного зменения 
внешних воздействий, или когда ситуации являются неопределенными или изменяющимися. 

Работа математических моделей показана на примерах. 
Ключевые слова: управление, многокритериальная оптимизация, вариационн
ейная схема компромисов, целевая функция, нелинейная 
изация. 

 
БА

Альберт Миколайович Воронін (д-р техн. наук, професор, професор кафедри)1 
Юрій Кашафович Зіатдінов (д-р техн. наук, професор, завідувач кафедри)1 

ександр Юрійович Пермяков (д-р техн. наук, професор, начальник інституту)2 
Ігор Давидович Варламов (канд. техн. наук, докторант)2 

 
1Н  аціональний авіаційний університет, Київ, Україна
верситет оборони України ені Івана Черняховського ім

татті розглядаються динамічні системи управління. В таких системах критерій якості
 являє собою функціонал, визначений на її рішеннях. Екстремізація функціоналів є предм

ійного обчислення. В багатокритеріальному випадку труднощі рішення варіаційних задач 
багаторазово ускладнюються необхідністю екстремізаціі векторних функціоналів.  

Для вирішення даної багатокритеріальної задачі використовується нелінійна схема ком
на основі принципу раціональної організації. Робота математичних моделей показана
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