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MULTICRITERIA OPTIMIZATION OF DYNAMIC CONTROL SYSTEMS

The article deals with the dynamic control system. In such systems, the criterion of the quality of
management is a functional defined on its decisions. Extremalization functionals is subject to variations
ischesleniya. In the case of multicriterion problems solving variational problems repeatedly usugublyayutsya
necessity extremalization vector functionals. To solve this problem developed multiobjective nonlinear scheme of
compromise on the basis of rational organization.

It has been shown that one of the disadvantages of the principles of homogeneity is that they are not the
"economical". Achieving the next level of the relative loss is often implemented at the cost of a significant
increase in their overall level. While developers are particularly interested in saving the total consumption of
resources in the management system, the use of the integral optimality principle leads to a sharp difference

between the levels of the individual losses.

The nonlinear scheme of compromise offers new scope for solving multicriteria problems in different
statements. It becomes particularly desirable in cases where the dynamic control system operates in a wide
range of possible variation of the external signals, or when the situation is indeterminate or variable.

Mathematical models were shown in the examples.

Keywords: control, multicriteria optimization, variational problem, nonlinear trade-off scheme, objective
function, nonlinear criterion function, rational organization.

Introduction

In the synthesis of complex modern dynamic
systems, account has to be taken of widely different,
often contradictory, conditions on the system
performance; i.e., we urgently need to develop a
formalized approach to the solution of multicriteria
variational problems.

Problem formulation. Given the system of
differential equations describing the behavior of the
control object

%:f(x,u,xg,z,t):f(), (1)

where x =x(t) is the state vector, u=u(t)is the
control vector, x® =x%(t) is the vector of given
signals, x? = X(to) is the vector of initial conditions,

x! =x(T) is the final state vector, z=2z(t) is the
vector of disturbing forces, t €[t(,T] is time, and f is

the vector function of generalized force.

fand z are

The external conditions x2,x°,x
specified in some form.
Let the given set of partial performance criteria of

control system (1) form the vector

I= (). (2)
Each of the partial criteria is a functional
I; =I;(),1€[l,n], defined on the solutions of system
of differential equations (1) with a control from the
class of admissible controls U. The vector of partial
criteria is restricted to an admissible domain

IeM(). 3)
The multicriteria variation problem amounts to
finding the extremals
{x*(),u*(t)}, telty, T,u*e U, I*e M(D), @)
for which vector functional (2) is optimized. For a
practical  solution of the problem, special
supplementary assumptions need to be made.
Analysis of recent research and publications.
We can assume without loss of generality that all the
partial criteria require minimization, in which case
they can be referred to for brevity as losses
accompanying the control process. For each partial
criterion I;(-)>0, the upper bound of the variation

needs to be known:

Ii(~)£Bi,ie[l,n]. (5)
Information about these bounds is part of the
mathematical description of the object.

There may be restrictions on other control system
functionals, which for some reason do not belong to
the vector (2); then, it is desirable to widen relation (5)
and write instead:

o () <A kell,s],s>n, (6)

where @k(-)>0 is in general a bounded functional of
the control system. We shall extend the concept of
“loss” to expression (6): we shall assume that, when a
limit Ak is reached with respect to any bounded
functional @k, the system operation is equally
endangered, and that violation of any of inequalities
(6) leads to failure of the system. In short, the
admissible domain (3) is mapped by expression (5), or
in the widened form, by the system of inequalities (6).
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To solve constructively the multicriteria synthesis
problem we shall use the method of convolution of the
partial criteria, whereby the optimization of vector
functional (2) is reduced to minimization of some
scalar criterion function ®(I).There are two different
ways of convolution of the criteria [1,2]. The first
consists in choosing heuristically the type of criterion
function, which is here called the generalized criterion
(it is usually a linear function of the partial criteria,
while various measures of closeness to the ideal result
may be used). The parameters (coefficients) of the
generalized criterion are chosen on the basis of the
relative importance of the partial criteria.

The second method consists in using a system of
axioms for proving the existence of a criterion
function (here it is called the usefulness function) of a
special kind. In practice, it is almost always a linear
function, though in actual fact the axioms about the
independence of the partial criteria are most usually
violated, in which case, from point of view of
prescriptive theory of usefulness, we are not strictly
justified in using a linear form. The coefficients of the
usefulness function are determined in the light of
information about the preferences of the person
making the decision.

If we leave aside the actual ways in which the
criterion function is determined, the generalized
criterion and the usefulness function can be taken to
have the same meaning.

To extend the class of problems considered, we
shall make weaker assumptions about the criterion
function than are made in the usual approach. We
shall assume that ®(I) is not known a priori, and that
all we can say about it is that it is continuous and has
continuous partial derivatives with respect to its
arguments in the domain (3). It was shown in [3] that,
under these assumptions, it is always possible to write
a nonlinear function ®(I) in the quasilinear form

n
o) = vi()-L;, (7

i=1
where yi(I) are variable coefficients, forming the
continuous vector function y(I) = {y;(I)}.,.

In fact, let

ob o 0D
be the matrix of partial derivatives of function ®(I). If
we define

JH)= (3)

1
v(D = [J(E D, ©)
0
it can easily be seen that we have the identity

n
oD =y(D-1" =Y 7D

i=l1
By introducing a nonlinear criteria function, we
are able to study multicriteria dynamic systems
designed for operation in situations with widely
variable external signals, or adaptive multicriteria

systems, etc.

(10)

The absolute value of the function ®(I) and of the
losses composing it depends both on “internal” causes
(the system structure and parameters), and on the
external conditions (the disturbing forces, the given
signals, the boundary conditions); the collection of
these latter characterizes the system operating mode.
This mode will be defined as a vector r in the space

(11)
In view of the physical restrictions described above,
the vector r will in fact be determined in some domain
of space R, i.e., re S(r) c R.

R=x%,x"x",2)>r.

The statement of the multicriteria variational
problem is very much dependent on the specification
of the system operating mode. In the most complex
case, all we know about vector r is that it does not go
outside the domain S(r). We arrive at a modified,
usually simplified, statement of the problem when the
information about the external conditions is refined
(statistical [4] or determinate description).

Solution of a complex multicriteria optimization
problem may be based on an approach whereby a
simpler “basic” problem, typified by fixed external
conditions, is solved. Assume that the system is
designed for operation in a fixed mode, if we are given
the external conditions

0 _f
r=ry= {x%,xo,xo,zo} e S(r),

(12)
where x%(t),zo(t) are given determinate functions of

time, and x8, xg are the given boundary conditions.

By specifying the external conditions in this way,
we can not only simplify solution of the problem as a
whole, but we can also linearize the criterion function.
In fact, assuming the existence of an optimal solution
corresponding to the given external conditionsr =r, ,

we write the expression for criterion function (7) at the
optimal point:

n
0° =0°(1°) =Y ;(1°) 17 .
i=1
Since function (7) is assumed to be continuous, we
can apply the method of frozen coefficients [5] here,
whereby, in the neighborhoods of point lo, the
criterion function is described by the approximate
equation

(13)

(D~ v (%) 1,

i=l1

(14)

where v;(I°)=y; =const,i €[l,n], are the “frozen”
coefficients. In view of (13), we can see that Eq.(14)
becomes exact at the point I=lo.

We can thus draw an important conclusion for the
treatment of multicriteria problems, namely, a linear
form of criterion function is suitable for the class of
given (fixed) external conditions.

In the linear case, the problem of finding the
criterion function reduces to determining the constant

coefficients yi, ie[1,n], forming the vector y = {y;}i;.

We make the assumptions about the vector
function f in expression (1) that are usually made in
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variational problems, namely, that its components are
continuous and continuously differentiable with
respect to the set of variables x, u, t in their given
domain of variation x,ueN(x,u), te[t0,T].

The main material research

Method of Solving "Basic" Problem. In the
given mode (12), starting from the object equations
(1) and the criterion function in the form (14) with
undetermined coefficients y, we use one of the
familiar ~ variational —methods for optimizing
analytically the control process with ueU. As a result,
we obtain an analytic expression for the set of
extremals

x=x(t,y); u=u(t,y), 15)

which depend on the unknown coefficients vy.
On substituting (15) in the expression for functionals
(6), we obtain

ok=0k(y) < Ak, ke[1,s],) (16)
i.e., the losses accompanying the control process are
now expressed as functions of coefficients y. The fact
that inequalities (16) are satisfied implies the existence
of an admissible domain of variation of the
coefficients of the criterion function: yel'y.

In other words, each extremal of set (15)
generates, for yel'y, in accordance with (16), a
specific set of losses, that make up the efficiency
vector

P(Y) = {@r (V) }k=1- 17)
The losses may be of different physical kinds and
different dimensionalities. To be able to compare
them, we normalize efficiency vector (17) by the

constraints vector A ={A,}i_;, and obtain the
relative loss vector

Py(y) = {Aikcpk (Dhor 00c €[0]. (18)

By analyzing and comparing the components of
vector (18) for different values of coefficients yeIy,
we can isolate a vector PO* = PO(y*) which is in some
sense "better" than the rest, and thereby define the
vector y* of required coefficients of the criterion
function. Corresponding to these operations we have
the formal model of vector optimization

¥ = F! opt Po(y) , (19)

vely
where F-1 is the inverse of the mapping PO —y, and
opt is the operator of optimizing the relative loss
vector, corresponding to the compromises made in the
problem.

We substitute in (15) the optimal values y* thus
found for the coefficients of the criterion function, and
hence isolate from this set the required extremals x =
x*(t) and u = u*(t).

This describes the general scheme of our analytic
method for solving the "basic" multicriteria variational
problem.

Discussion of Method. Notice that, in the context
of the above scheme, determination of the coefficients
of the criterion function, and determination of the

extremals of the control process, are both integral
parts of a single optimization procedure.

Let us compare our method with another approach
to the solution of dynamic multicriteria problems,
described in [6, 7]. Here, given the external
conditions, the ideal vector lid is found, while the
criterion function is introduced as a measure of
closeness to the ideal vector, e.g., in the form of the
euclidean norm of the vector I- Iid. This approach
demands the solution of n + 1 variational problems,
since we have to find the n components of the ideal
vector of partial criteria, then extremize a complicated
vector functional. In our method, only one variational
problem, and that with a functional of conventional
type, has to be solved, while all the specific features of
multicriteria optimization make their appearance in
minimization of a vector function (and not a
functional), which is much simpler.

A common feature of the two methods, and
indeed, of other methods, is that the method of
solution of the multicriteria problem contains heuristic
elements. For instance, it is pointed out in [6] that the
result of solution depends on the choice of norm in the
space of optimized functionals. Similarly, in our
method there is the heuristic choice of the scheme of
compromises (optimality principle). While the method
may contain other heuristic elements (choice of
normalization, allowance for priority), the choice of
the scheme of compromises is the central feature.

According to one point of view, the heuristic
nature of the vector optimization problems is not
simply a drawback, but is inherent in multicriteria
problems. If we accept this point of view, we must
regard as justified the situation in which the result of
solving the multicriteria problem depends on the
experience and skill of the person solving the
problem. While acknowledging the complexity and
conceptual nature of these problems, we nevertheless
believe that the key trend in vector optimization is the
development of methods whereby we can reduce or
entirely eliminate the heuristic elements in the final
result of solution of the multicriteria problem.

Scheme of Compromises. It is clear from (19)
that, for constructive solution of the vector
optimization problem, we need to define the scheme
of compromises (optimality principle), and thereby
reveal the precise sense in which the vector PO* is
"better" than the other combinations of relative losses.
Mathematically, definition of the scheme of
compromises implies expansion of the optimization
operator, e.g., in the form

opt Py(y)= min Y[Py(y)}
yely vely

(20)

where Y is a scalar function of the relative losses.

On the basis of the results of [8, 9], we can write
all the optimality principles of practical interest in the
unified integral form

S
opt Py(y)=min Y gy (y)heflo]  (21)
vely vely k=
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If we put the formal parameter h equal to unity, we
obtain the integral optimality principle

S
opt Py(y)= min 3" @oi(v)
YEFY Ye Y k=1
If we let h tend to infinity, we obtain the principle of
uniformity, equivalent to the Chebyshev model

opt = min max Q. ('y)
vel, yel'yke l,s]

(22)

(23)

If we take h € [1, ], we obtain a range of optimality
principles, giving partial equalization of the losses,
i.e., providing a solution, intermediate between the
two polar schemes of compromises: the Chebyshev
operator (23), and the integral optimality principle
(22). 1t is easily shown that the solutions obtained
from all the considered schemes of compromises are
Pareto-optimal.

Each scheme has its advantages and drawbacks.
For instance, operator (23) compels us to minimize the
worst (greatest) relative loss, reducing it to the same
level as the rest. The relative loss equalization
principle

01;’_'[ Py (v)= {901 (v) = 902 (v) =+ = 905 (v)}

24)

implies that the most uniform variation of the level of
each loss is realized. As an example of this, we may
mention a competently designed mechanism that
operates uniformly and at the end of its service life,
fails simultaneously in each of its sections. It was
shown in [10] that, if the solution found by means of
condition (24) belongs to the Pareto domain, then it
will simultaneously satisfy the min-max principle
(23).

One of the drawbacks of uniformity principles is
that they are not "economical." The achievement of
the closest levels of relative losses is often at the cost
of a substantial increase in their overall level.

While application of the integral optimality
principle (22) implies that the designer is particularly
interested in economizing on total consumption of
spares and resources in the control system, the
drawback here is that sharp differences become
possible between the levels of individual losses.

Example 1. To illustrate the scope of our method,
let us take a simple model example. The control object
is described by the differential equation

((11—); =—ax +u=f(-)a = const. (25)

The control system is designed for operation in
fixed external conditions, and the system operating
mode r = r0 = {x0, xf} is characterized by the initial
condition x(0) = x0 and the final small neighborhood
e==£x(T) = +xf.

The system performance is estimated according to
the two partial criteria

()= [x%dt, () = [u?dt. (26)
0 0

Funcfcionals (26) are defined on the solutions of Eq.
(25). The following restrictions are imposed on the
functionals (losses) of the system:
1) The required dynamic accuracy is subject to the
inequality
QLC)=II()<AL; 27
2) the energy resources of the system with respect to
control are restricted by the inequality
2(-)=12(-)<A2; (28)
3) the time allowed for realizing the control process is
restricted:
¢3(-)=T < A3. (29)
We pose the problem of finding the extremals of
the control process x = x*(t) and u = u*(t) for which

the vector functional I={I; (-)}?:12 is optimized.

To solve the problem, we introduce the criterion
function F(I), which, since the external conditions are
fixed, can be written as F(I) =ylI1(-)+y212(:). To
eliminate the trivial solutions (yl=y2=0) we impose
the extra condition y1 = 1. Then, the expression for the
criterion function transforms to

@ (1)=1,0)+ 11,0)= [ (2 702 i,

0

(30)

where y=y2.

We use classical variational calculus for finding
the extremals without finding y. On the basis of (25)
and (30), we form the Lagrange function

L=x2+yu2+ X(X +ax — u), (€2))]
where A is the Lagrange multiplier for the
nonholonomic connection.

Euler's equations for function (31) are

a—L—ia—If:2X+a7»—7L:0,
ox dt ox (32)
o da_, o
ou dtoa T '
From the last equation of (32), we find
u =l (33)
2y

and substitute it in (25). Adding the first equation of
(32), we obtain the system

X =—-ax+—,
2y (34)
A =2x+al.
The characteristic determinant of this system, with
root p, is

1
Ap)=*7P % |=0.

(35)
2 a—-p
Hence
p =p(v)=1/a2+%- (36)

If we consider only stable solutions, we can write the
expression for the extremals

x=Cie P A=Chre ™, (37)
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where C1 and C2 are coefficients that depend on the
initial conditions. It follows from the first of (37) that
C1 =x0. To find C2, we form the equation
(dx /dt)|_g=—C;p=—x"p=—ax" +(C, /2y). (38)
Hence
C,=2x"(a-p). (39)
Starting from (37) and (33), the general expression
for the extremals is
x(t,p)=x% P u(t,p)=x"(a-p)e . (40
For our future working, it is more convenient to use
the function p(y) of (36), rather than the coefficient y
itself; if we know p, we can easily find y:
v=1/(p2-a2). 41
We now obtain the expressions for the relative
losses:
P01()=p1(-/AL, p02()=g2(-)/A2,
@03(-)=p3(-)/A3. (42)
On substituting here expressions (40) for the
extremals, and using (26)-(29), we obtain the relative
losses as functions of p:

X X
Po1(p) = (1/ Ap) [ x*de =(1/ A X0 2P = b1/ p) (43)

0 0

02
where b=x" /2A;;
002(p)=(1/A2)
X X
2

[udt=(1/A)[x" @@a-p)*ePdt=c(a—p)* /p, (44)
0 0

02
where c=x" /2A,.

We find the third loss from the first expression of
(40) after substituting in it the boundary conditions

| xfl = x0l e-pT. (45)
From this, recalling (29), we have
©03(p)=(1/A3)Inl x0/x1l /p=d/p, (46)
where d:(l/A3)1n| x0/x] .
We now form the relative vector
Po(p) = took (P} @7)

and optimize it with respect to the chosen scheme of
compromises. Assume that, on the basis of physical
considerations, the integral optimality principle (22)
has been chosen. Optimization of vector (47) with
respect to the integral optimality scheme amounts to
minimization of the function
Y(p)=¢01(p)*+¢02(p)+903(p)=b/p+c(a-p)2/p+d/p.(48)

Solution of the equation 0Y(p)/Op=0 leads to the
result

p*:p _ a2+b+d'
c
We substitute this result in (40) and thereby extract
from the set of extremals the required extremals
x=x*(t)=x0e-p*t, u=u*(t)=x0(a-p*)e-p*t.  (50)
The coefficient y* is found from (41), and the
coefficients of the criterion function are
y1=1, y2=y*. (51)
On eliminating time from expressions (50), we obtain
the optimal control law
u*=(a-p*)x.

(49)

(52)

Nonlinear Scheme of Comprimises. The choice
of scheme of compromises needs to be related to the
situation for which the optimal solution is being
sought; as the situation changes, corrections need to
be made to the optimality principle [8, 9, 11]. In the
case of dynamic control systems, the "situation" is
identified with the "mode," regarded as the set of
external conditions for which the system is required to
operate.

If the dynamic system is designed for operation in
a stressed mode, the implication is that the external
signals may be such that one or more losses are in
close proximity to their limit. If a loss does reach (or
exceed) its limit, it is no compensation that the other
losses meantime remain at a low level (by hypothesis
of the problem, normal operation of the system is
disrupted as soon as any constraint is violated). In
such a situation, the increase of the most dangerous
loss (i.e., the loss closest to its limit) needs to be held
back, without regard to any possible increase in the
other losses. In short, the optimization operator most
suitable for the stressed operating mode is the
Chebyshev operator (23).

On the other hand, if the situation is such that no
danger can arise of violating the constraints, it is better
to use the "economical" operator (22); this ensures
minimal overall losses, while the possible substantial
differences in the individual loss levels present no
danger in this "quiet" situation. Intermediate modes
demand schemes of compromises that offer varying
degrees of partial equalization of losses.

The above analysis is by way of being axiomatic:
by accepting its recommendations, we can form a
unified universal scheme of compromises, which can
be adapted to any situation with any degree of stress
of the system operating mode.

We shall characterize the degree of stress by the
proximity of a relative loss to its limit (unity):

1-p0k(y)e[0;1], ke[ 1,s]. (53)

We shall adopt here a nonlinear scheme of
compromises, corresponding to which we have an
optimization operator dependent on characteristic
(53):

S
opt Bo(y) = min D (1= (. (54)
yel, |

It is clear from (54) that, if a relative loss, e.g.,
¢om(y) me[l, s], starts to come close to its limit
(unity), then the corresponding term 1/[1 - ¢m(y)] in
the minimized sum will increase to such an extent that
minimization of the sum reduces to minimization of
just this one (worst) term. But this is equivalent to
action of the Chebyshev operator (23). On the other
hand, if the relative losses are remote from unity, then
the action of operator (54) is equivalent to the action
of the integral operator (22).

Let us show that our proposed scheme satisfies the
condition of Pareto optimality. The proof will use the
same technique as in [6]. Given:

1) the set of admissible solutions yeIy, I'y is convex
in En;
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2) the solution with respect to the nonlinear scheme of

compromises
1
-on ' <
7N =y " el vy el : Z

k=< Z[l_(POk(Y)] :
k=1
3) the set of Pareto-optimal solutions
©el’;Vyell, : ©)<
F«}(: Y@y ely;vyely (POk(y ) (POk() (56)
& [L.m <s]ook (v©) < poi (v)k € [m + Ls]|

We want to show that y" e 1";(.

; (55)

Assume the contrary, i.e., the solution yA does not
belong to set I'yK. Then, there is a solution y--€I'y
such that

0ok (7)< 0ok (7)k € [1Lm <s]

(57)
ook (7)< <P0k( Jkelm+1,s]
In this case, with y €T, , we have the inequality
Z[l ook (7 )] < Z[ — oo @) (58)

which contradlcts the deﬁnltlon of solution with
respect to the nonlinear scheme of compromises (55).

Consequently, y" e F;(.

Discussion of Nonlinear Scheme. Formally, the
scope of the range of schemes of compromises for the
operator (54) is similar to that for the unified Integral
scheme (21); but the parameter h in (21) is not linked
with the situation and has to be specified heuristically.

The nonlinear scheme of compromises has the
property of being continuously self-correcting as the
situation (mode) varies. In stressed situations its effect
is equivalent to the action of the Chebyshev (min-
max) operator, while in quiet situations its action is
equivalent to that of the integral optimality operator,
and in intermediate situations it gives varying degrees
of partial loss equalization. From this point of view,
the traditional schemes of compromises can be
regarded as the result of "linearization" of the
nonlinear scheme at different "working points"
(situations). This explains, incidentally, why we call it
the nonlinear scheme; in other respects, it is no more
nonlinear than, say, the unified integral form (21).

It must be emphasized that the self-correction of
the nonlinear scheme according to the situation takes
place continuously. Leaving aside the unified integral
form (21), which is very difficult to apply in practical
situations, the traditional procedure for choosing the
scheme of compromises is realized discretely. This
means that, to the subjective errors in solving a
multicriteria problem, are added errors connected with
the quantization of the schemes of compromises. By
using the nonlinear scheme, we can improve the
accuracy of solving the "basic" multicriteria problem,
thanks to the continuity of the self-correction.

It cannot be said that the use of a nonlinear scheme
of compromises entirely eliminates heuristic elements
from the process of solving a multicriteria problem.

First, there is something heuristic in the acceptance of
the axioms implied in our above analysis of the link
between situation and choice of optimality principle.
And second, relation (53) is not the only way of
characterizing stress, nor is the form (54) of the
optimization operator unique. Nevertheless, the
nonlinear scheme does reduce the subjective errors
implied if the situation has to be taken into account
when choosing a scheme adequate to the external
conditions.

The nonlinear scheme offers new scope for solving
multicriteria problems in different statements. It
becomes particularly desirable in cases where the
dynamic control system operates in a wide range of
possible variation of the external signals, or when the
situation is indeterminate or variable.

Example 2. In the conditions of Example 1, let us
optimize vector (47) with respect to our nonlinear
scheme of compromises. Assuming that the solution is
reached inside the given domain of restrictions, we
solve the equation

%é[l ~ oo (p)] " =0.

Recalling the notation (43), (44), (46), we can
transform Eq. (59) to

b/(p-b)2 + c(a2-p2)/[p-c(a-p)2]2+d/(p-d)2=0. (60)
The required coefficient p* = pA is found as the real
root of Eq. (60).

Suppose, for instance, that the system is
characterized by the numerical data (we omit the
dimensions)

a=1; A1=50; A2=100; A3=3; xf=1,  (61)
while the initial condition can take values in the range
x0 € [0, 15.5].

By using our nonlinear scheme of compromises,
we can uniquely solve the "basic" multicriteria
problem for any stress properties of the situation
(mode). In fact, let us find coefficient pA in an
extremely stressed mode, when x0 = 15.

Using the notation of (43), (44), (46), we have in
this case

(39)

b=152/2-50=2.25;

c=152/2-100=1.12;

d=(1/3)In15=0.9.
Substituting data (62) in Eq. (60) and solving it, we
obtain

(62)

pAl x=15=2.39. (63)
Here, in accordance with (43), (44), (46), the relative
losses are
@01 Al x=15=2.25/2.39=0.94;
024l x=15=1.12(1-2.39)2/2.39=0.90; (64)
903l x=15=0.9/2.39=0.38.

For comparison, let us use the Chebyshev scheme
of compromises in this stressed mode. The simplicity
of the examples allows [9] to be used for realizing the
Chebyshev model by the unified integral form (21)
with

h>h0=log s/log (1+e), (65)
where €@ is the relative error of finding the loss. We
form the function
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s h > h h
V(p)= ot (p)= (Ej + {CM} +(9j (66)
k=1 p p p
and obtain the necessary condition for its minimum
oV(p) /0p = 0. After differentiation, we obtain
bh+c(a2-p2)[c(a-p)2]h-1+dh=0. 67)
The real root of this equation is the solution according
to the Chebyshev uniformity principle p=. We specify
€ = 0.01, and in accordance with (65), get
h0=log 3/log (1+0.01)=110.4. (68)
We take h = 121 and write Eq. (67) in the light of
(62):
2.25121+1.12(1-p2)[1.12(1-p)2]121+0.9121=0. (69)
The real root of this equation is
p=l x=15=2.41, (70)
i.e., the results (63) and (70) are virtually the same, as
ought to be the case in the stressed mode.

Notice incidentally that Eq. (69) is of high degree
and difficult to solve, whereas Eq. (60) can be solved
quite easily.

In accordance with (49), the integral optimality
principle gives

225+0.9

P |xmts =41+ "D =1.95, (71)
which implies
@01+ x=15=1.15, 02+ x=15=0.52,
903+ x=15=0.46. (72)

The integral scheme is thus unusable in this
stressed situation, since it forces one loss to go beyond
its tolerance, whereas the other losses remain at a
fairly low level.

Now take an easy mode, corresponding to the
initial condition x0 = 2. After calculations, we find
that the coefficient corresponding to the nonlinear
scheme of compromises has the value

pAl x=2=3.85. (73)
On using the integral optimality principle in this quiet
mode, we obtain

pH x=2=3.81, (74)
i.e., the results are very similar in both cases. Use of
the Chebyshev scheme in this mode gives

p=l x=2=4.38,
which is substantially different from (73) and (74).

It is interesting to consider how the solutions,
obtained on the basis of different schemes of
compromises, behave when the situation changes. Let
us divide the range x0e[l1.5, 15.5] into several
subintervals, and solve for each the “basic” problem
with the integral, Chebyshev, and nonlinear schemes.
The results are shown graphically in Fig. 1. It can be
seen that the solutions p* obtained by the nonlinear
scheme are the same, at the ends of the range of initial
conditions, as the solutions obtained by the polar
schemes: on the left by the integral scheme p+, and on
the right by the min-max principle p=. At intermediate
points of the range, the curve p*(x0) lies between the
pT(x°) and the p=(x0) curves.

It is useful to compare this picture with the
corresponding curves of relative loss variation in
Fig. 2. It can be seen from the latter, in particular, that

(75)

if the nonlinear scheme (or the min-max principle) is
used in stressed modes, the system can remain
operational with values of the initial deviations right
up to 15.5, whereas, with the integral optimality
principle, the first loss can go beyond its tolerance
even with x0 = 14.0. On the other hand, in quiet
situations, use of the nonlinear scheme gives the same
relative loss distribution as does the integral scheme;
this shows that the nonlinear scheme is economical in
situations where there is no danger of the system
violating its constraints.

Nonlinear Criterion Function. If the multicriteria
system is studied in a wide range Q(r) of external
conditions, the criterion function ®(I) needs to be
written as a nonlinear relation in partial criteria.

Let the system operation be considered in q fixed
modes, corresponding to each of which we have a
vector

j={xjg,xj0,xjf,zj} e Q(r)cS(1), je[l,q]. (76)
We showed above that, with small deviations from a
fixed mode, the criterion function can be linearized
and written as

. n .
@)(1)=3 vl.j[l.a) (77)
i=1
where vij is the coefficient of the i-th partial criterion
in the j-th mode. If the system operates in the strictly
designed mode, Eq. (77) is exact.

If we assume that coefficients {yi(j)}in:l’ jelLql,

are known, we obtain as a result of this discussion the
g combinations
(O(1);11(1),12(1),...,In(1)),(D(2);11(2),12(2),...,In(2)),..
SD@51(Q).12(Q),-- In(q)), (78)
which can serve as reference points for approximation
of the criterion function ®(I) by the approximating
function F(I).

In short, the proposed scheme demands the
solution of two problems: determination of the
coefficients {yi(j)}i=1n, je[l,q], of the linearized
criterion function at q fixed modes, and construction
of the approximating function F(I). The first problem
is solved within the framework of the “basic”
multicriteria problem, an important point being that
we necessarily have to make use of our nonlinear
scheme of compromises, with the property of being
continuously self-correcting. The second problem may
be solved by least squares.

Example 3. In the conditions of Examples 1 and 2,
let the system operating mode r = {x0, xf} be
characterized by the final state xf = 1 and an initial
condition that can vary in the domain Q(r) = Q(x0) =
[xOmin,x0Omax] = [1.5, 14.0].

We pose the problem of finding the nonlinear
scalar relation @ = ®(I), connecting the criterion
function ® with the partial criteria I1 and 12, assuming
that the initial conditions can vary throughout their
range.

We consider the system operation in 21 modes (q =
21); the results are shown in Table 1. We shall seek
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the approximating function in the class of second-
order interpolation polynomials:

F(D)=R111+p212+B3112+B4122+B51112, (79)
where {Bm}m=1s are the unknown coefficients of
regression.

In accordance with the method of least squares, the
unknown coefficients of the interpolation polynomial
are found from the condition for minimizing the sum
of the error-squares:

E:i(@j—Fj)z.

J=l

(80)

Using the necessary condition for a minimum: OE
/oPpm =0, m € [l; 5], we obtain the simultaneous
system of normal equations:

m of normal equations:
iI{(@—BlI{—BzI’z—Bﬂ{ ~ a1 -pstlit ) o,

(81)

Substituting here the numerical data of Table 1, and
solving system (81) for fm}m=15, we obtain
O()=F(1)=0.624511+0.171912+0.1430112+0.0045122-
0.0535I1112. (82)

Principle of Rational Organization. To perform
the control function successfully, given the operating
conditions, any system must have certain (in general,
limited) margins and resources (in the sense of
strength, temperature, amount of fuel, etc.). In the
usual statement, the limits of the margins and
resources are regarded as fixed and given. But cases
are common in practical synthesis of multicriteria
systems (especially at the early design stages), in
which the designer has some scope for varying some
or all of the margins and resources, and selecting a set
of limits for them which is in harmony with the given
external conditions.

Every scheme of compromises reflects a quite
specific useful property which the designer deems to
be desirable for the system in the considered situation.
If the solutions obtained on the basis of different
schemes of compromises are the same (or nearly the
same), this implies that the margins and resources are
chosen and utilized so successfully that, in the given
conditions, the system simultaneously meets all the
demands made in the different optimality principles,
i.e., the system is rationally organized.

When the solutions are identical, the problem of
selecting the scheme of compromises falls out, and the

heuristic element disappears from solution of the
multicriteria problem. The problem of vector
optimization then reduces completely and objectively
to a problem of scalar optimization.

The principle of rational organization in
multicriteria problems may be stated as follows: in the
rationally organized system, given the operating
conditions, the restricted margins and resources are
chosen in such a way that optimization of the
efficiency vector with respect to different schemes of
compromises leads to identical (or almost identical)
solutions.

Since the principle of rational organization is
universal and can be used for practical solution of a
wide variety of multicriteria problems, we shall
develop in a quite general form the constructive
apparatus for realizing the principle.

Given the set of admissible solutions 'cEn in
which are defined the vectors x = {xi}i=In of n-
dimensional Euclidean space. The quality of a solution
is estimated from a set of local criteria, represented by
scalar functions yl(x), y2(x),...,ys(x). The local
criteria form the s-dimensional efficiency vector y
={yk}k=1s defined in the set I. We can assume
without loss of generality that all the local criteria
require minimization (in which case we can briefly
refer to them as losses). We know that the losses are
bounded: 0 < yk(x) <Ak, k € [1, s], though the
concrete values of the bounds Ak are not defined and
may be chosen from some given admissible set ['a of
the constraints vector A = {Ak}k=1s.

We pose the problem: 1) of finding the optimal
solution x* belonging to I' and optimizing the
efficiency vector y; 2) of finding the optimal
constraints vector A* € I'a, for which the principle of
rational organization is satisfied.

We can assert that, if the principle of rational
organization is satisfied, then the optimal solution will
belong to the Pareto domain

I'K= {x*| x*el;Vxelyk(x*)<yk(x),ke[1,m<s];yk
x*)<yk(x),ke[m+1,s], (83)
it will simultaneously satisfy all the schemes of
compromises, leading to Pareto-optimal solutions, and
it will be unique.

Hence it follows that, mathematically, realization
of the rational organization principle is none other
than degeneration of the Pareto domain 'K to a single
point x*, which is the required optimal solution of the
multicriteria problem.

We normalize the efficiency vector by the
constraints vector and obtain the relative loss vector

S
Yo = {AL Yk(x)}
k k=1
Assuming that the convexity conditions hold,
under which Carlin's lemmas are valid [12], we can
write the expression for the domain of compromises
(83) as the solution of the parametric programming
problem

=y (A (84)
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rk = U F_l{min iakYOk(X’A):l’ (85)

acl, XM k=l

where F-1 is the inverse of the mapping y0—x,
o={ak}k=1s is a vector parameter, defined in the set

S
I, = {oc Zak =Loy > O}.

k=1

Since, when the principle of rational organization
is satisfied, the Pareto domain I'K contracts to the
point x*, expression (85) must transform to

x*= F—l{milr}ZockyOk(x,A)} (87)

aely X€ k=1

point x* is

(86)

Since the unique, the sum
S
Z(xky()k (X,A) in (87) must be invariant with respect

k=1

to the parameters ael'a. This sum is only
independent of these parameters if
yO1(x,A)= y02(x,A)=...= yOs(x,A). (88)

For, if the relative losses are equal, y01 =y02 =. .. =
yos = L, then, in view of property (86) of the vector

S
parameter Z o =1, the sum takes the form
k=1

S S S
D 0kYok = D okh=pY o =pel=p (89)
k=1 k=1 k=1

and is independent of the parameters a.el"a.

On the other hand, the unique point x* must
belong to the Pareto domain with any set of
parameters a.el"a.. In view of the arbitrariness of the
parameters, and property (86), we obtain

al=02=...=as=1/s.
Then, expression (87) takes the form

(90)

S S
x*=F!| min Zl Yok (x,A) = F_l{min1 ZyOk(x,A) (O1)
xel'' s} 7

Xe k=1

We know that a constant factor does not change the
position of the extremum of a function; hence we can
cancel the factor 1 /s and obtain

S
x*= F{min Z Yok (x, A)}
xell k=1
Degeneration of the Pareto domain 'K to the
single point x* is represented by the intersection of
conditions (88) and (92) with p = 1. Expanding (88),
we obtain the system of equations
y0j(x,A)-y0,j+1(x,A)=0, je[1,s-1].
Condition (92) generates the system of equations

S

2% volx.A)=0ic[n]
oXi 1o

We have to consider (93) and (94) together as a
simultaneous system of equations. But this system is
clearly indeterminate in the general case, inasmuch as
a nondegenerate solution can be obtained with an
infinite number of combinations of absolute values of
the constraints. In short, we need to complete the
definition of the problem with an extra condition, e.g.,

92)

(93)

(94)

the condition that the 1-th relative loss (or in our
present case, all the relative losses) be equal to a given
quantity:

yOI(x,A)=p<l. (95)
Moreover, in applications one constraint is often
given:

Al=Alo (96)
and cannot be varied. In this case, p is not specified,
and instead of condition (95) we have to use (96).

To sum up, to solve a multicriteria problem on the
basis of the principle of rational organization, we have
to solve the system of equations (93), (94), (95), or
(93), (94), (96). As a result, we obtain the n required
components of the solution vector x* and the s
optimal components of the constraints vector A*.

The above simple and objective method can be
used if the problem of rational organization has an
exact solution in a given bounded domain of the
arguments. If this is not the case, heuristic devices
have to be employed. Even then, the principle of
rational organization can be utilized constructively
(for more details on this point, see [13, 14]).

Example 4. Retaining the other conditions of
Examples 1 and 2, and taking x0 = 10, assume that the
designer can select the constraints from the given
ranges

A1€[0;50], A2€[0;200], A3<[0;3].  (97)

At the end of the control process, we want all the
relative losses to take the value p = 0.5.

We pose the problem of finding, in the context of
the principle of rational organization; 1) the extremals
xopt(t) and uopt(t) of the control process; 2) the
coefficient yopt of the criterion function; 3) the
optimal values Alopt,A20pt and A3opt.

We make calculations on the basis of (31)-(46),
and obtain expressions for the relative losses. We shall
assume, first, that the problem has an exact solution,
and second, that this solution is reached inside the
given ranges of constraints (97). We form the system
of equations (93), (94), (95): in our present example it
takes the form

2
Po1 =Pz =——¢C a-p) p=0,

R
<P02—(P03=C(a pp) —%=0, (98)
) (b (a-p) d
—(@o1 + P2 + o3 )=—| —+¢ +—|=0.
ap( 01+ P02 +Pg3) ap[p » »

Solving system (98) and substituting the numerical
data, we obtain Popt = 3.0, b = d = 1.5; ¢ = 0.375.
Recalling the notation in (43), (44), (46), we find that
Alopt = 33.3; A2opt = 133.3; A3opt = 153.
Comparing these values with the constraint ranges
(97), we see that our assumptions are valid. The
expressions for extremals (40) are

xopt(t)=10e-3t, uopt(t)=-20e-3t. (99)
The value of the coefficient of the criterion function is
found from (41):
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1 1
Yopt == 5 =——=0.125.
Popt —@ 37 -1
And finally, a check shows that @01=p02=p03=p=
0.5.

Example 5. Suppose that, from physical
considerations, one of the constraints, e.g., A3, is
known to be given: A3 = A3o = 1.00, and cannot be
varied. In this case p is not specified; all the other
conditions of Example 4 are retained.

To solve this new problem, we form the system of
equations (93), (94), (96):

(100)

b—c(a—p)zzO,
c(a—p)z—d=0,

—p) 101
i E+CM+E :0’ ( )
op|p PP
Az =AS.

Using the numerical data, solution of this system
gives Popt = 3.0; b =d = 2.3; ¢ = 0.575, and hence
Alopt =21.7; A20pt = 87.0.

Since the value popt = 3.0 remains the same as in
Example 4, the extremals will be given by (99), and
the coefficient y by (100).

We find the relative losses in this new version by
substituting the data obtained in (43), (44), (46); we
obtain @01=¢p02=¢p03=0.77.
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MHOIOKPUTEPUAIIbHAA ONTUMU3ALUNA OUHAMUYECKUX CUCTEM YNPABJIEHUA

Anvoepm Hukonaesuu Boponun (0-p mexn. nayx, npogpeccop, npogeccop xageopoy)’

FOpuit Kawaghosuu 3uamounos (0-p mexn. nayx, npoeccop, sasedyrouuii kageopu)’

Aﬂexcaubp IOpbeeu y I1 EPMAKOB (0-p mexn. Hayk, npogheccop, Ha4aIbHUK uucmumyma)z
Hzopo /lasvioosuu Bapnamoe (xano. mexn. nayx, doxmopanm)’

1 Y o
Hayuonansuwiit asuayuonnstii ynueepcumem, Kuees, Yxpauna
2 .
‘Hayuonanvuwiit ynusepcumem oooponvt Yxkpaunot umenu Heana Yepuaxoecxkozo, Kues, Yxkpauna

B cmamve paccmampusaromces ounamuueckue cucmemvl ynpasnenus. B maxux cucmemax kpumepuii
Kayecmea ynpasieHusi npeocmasisiem cobou (QYHKYUOHAN, onpedeneHHblll Ha ee peuleHusx. DKcmpemusayus

d)yHKUuOHaJZOG AeIemcs npeOMemOM 6APUAYUOHHO2O0  UCUHUCTIEHUAL.

B mnocoxpumepuanvnom  cuyuae

MPYOHOCMU peueHUsi 8aPUAYUOHHBIX 3A0ad MHOLOKPAMHO YCYeYOIsomes He0OX00UMOCHbIO IKCMPeMu3ayuy
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BEKMOPHBIX (DYHKYUOHAN08. [l peulenusi OaHHOU MHOZOKPUMEPUANbHOU 3a0adu papabomana HeluHeuHdas
cxema KOMIPOMUCCO8 HA OCHOBE NPUHYUNA PAYUOHATILHOU OP2aAHU3AYUU.

IHoxkazano, umo 00HUM U3 HEOOCAMKO8 NPUHYUNOE OOHOPOOHOCMIU AGNSEMCSL MO, YMO OHU He S6TISI0MCs
“axoHomuunbll . JlocmudiceHue OIUXCATIUUX VPOBHEll OMHOCUMENbHBIX NOMepb Y4dCmo pednusyemcs YeHou
CYWEeCmBEeHHO20 Y8eaudeHUst ux 0oue2o yposHs. B mo epems kax paspabomuuxu 0CoOeHHO 3aUHMepecosanvl 6
IKOHOMULU 006We20 nompebienus. pecypcos 6 cucmeme YNpaeieHus, NPUMEHEHUe UHMEZPAIbHO20 NPUHYUNA
ONMUMATLHOCIU NPUBOOUM K PE3KOMY OMAUYUIO MENCOY YPOBHAMU OMOETbHBIX NOMEPD.

Henunetinass ~ cxema  KoMupomuccog — npeonazaem  HO8ble — BOZMOJNCHOCMU Ol peuleHus
MHO2OKPUMEPUATLHBIX 3A0aY 68 PA3IUYHBIX NOCMAHOBKAX. DMO CMAHOBUMCS 0COOEHHO JICENAMENbHbIM 6 TeX
CAYHAsIX, K020a OUHAMUYECKAs CUCIeMA YRPABIeHUs. pabomaem 6 WUpoKoM OUANA30He 603MONCHO20 USMEHEHUS
GHEUWHUX B030€LiCMEUL, WU KO20d CUMYayUU S6/ISI0MCsL HeONPEOeNeHHbIMU UL USMEHSIOUUMUCSL.

Paboma mamemamuueckux mooeneti nOKA3aHa HA NPUMEPAX.

Knwuesvle cnosa: ynpaenenue, MHOZOKPUMEPUATIbHASL ONMUMUZAYUS,  6APUAYUOHHASL  3A0ayd,
HeIUHElHAs cxeMa KOMUPOMUCO8, yelesdsi (YYHKYUs, HeluHeuHas: KPUMepUuaibHas (QyHKYus, payuoHaibHAs
Opeanu3ayus.

BAFATOKPUTEPIAJIbHA ONTUMISALUIA AMHAMIYMHUX CUCTEM YNPABIIHHA

Anvoepm Mukonaiiosuy BopoHin (0-p mexn. nayx, npogecop, npogecop xagpeopu)’
HOpiu Kawadghoseuu 3iamoinoe (0-p mexn. nayx, npogecop, sasioysau xagpeopu)’
Onekcandp IOpitiosuu IlepmaKoe (0-p mexn. nayx, npogpecop, navansnux incmumymy)’
Izop /lasuooeuu Bapnamog (xano. mexn. nayx, doxmopanm)’

"Hauionanvnuii agiayiiinuii ynieepcumem, Kuis, Yxpaina
? Havionansnuii ynisepcumem o6oponu Yxpainu imeni Ieana Yepnsxoscvkozo, Kuis, Yxpaina

Y ecmammi posenadaromsca ounamiuni cucmemu ynpasninua. B maxux cucmemax kpumepiti axocmi
VNPAGIIHHA A815€ cOO0I0 (DYHKYIOHAN, 8U3HAYeHUll Ha i piwenHax. Excmpemizayisa ¢pynKkyionanie € npeomemom
sapiayilino2o obuucnenta. B bazamokpumepianvHomy eunaoky mpyonowi piuienHs sapiayiiHux 3a0ay
bazamopazo6o YCKAAOHIOIOMbCSL HEOOXIOHICIIO eKCMPeMi3ayii 6eKMOPHUX (DYHKYIOHANIS.

Jna eupiuienus 0anoi bacamokpumepianbHol 3a0ayi 8UKOPUCTIOBYEMbCS HENIHIIHA CXeMa KOMNPOMICI6
Ha 0CHOSI npunyuny payionanvhoi opeanizayii. Poboma mamemamuynux mooenetl noKa3aHa Ha npukiaoadx.
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